
NASA Technical Memorandum 88313

.

Digital = Flight = Control =System
Software Written in Automated-
Engineering-Design Language:
A Usets Guide of Verification and
Validation Tools
Jim Saito, Ames Research Center, Moffett Field, California

January 1987

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

CONTENTS

LIST OF SYMBOLS .. v

SUMMARY .. 1

INTRODUCTION ... 1

DFCSVL OVERVIEW .. 2
DFCSVL Environment .. 2

Environment Computer ... 2
Remote Link .. 2
DFCSVL Software .. 3

Univac Environment .. 4

TESTING .. 5

AED V & V TOOL DESCRIPTIONS .. 5
Static Tools .. 8

-d option: Module Dependencies ... 1 1
-g option: Global Cross Reference 1 1
-i option: Interface ... 13
-1 option: Enhanced Listing and Statement Profile 15
-s option: Symbols (SET/VSE) ... 18
-t option: Calling Tree .. 19
-u option: Units ... 21
-v option: Invocations ... 25
-x option: Cross Reference ... 2~
-r option: Reaching Set .. 26

Dynamic Tools .. 3~
The DFCSVL and Dynamic Execution .. 31
Instrumenting the Source Code ... 34
Assertion Tool .. 35
Trace Tool .. 38
Probe Tool .. 42

Symbolic Execution ... 45

EXTRACT PROGRAM (EXTR) .. 48 .
PALLET INTERFACE PROGRAM (PIF) .. 50

4 REPORT GENERATOR .. 56

CONSTRAINTS ... 58
Universal Constraints .. 59
Syntax Constraints ... 59
Tool Deficiencies .. 59

iii

SUMMARY OF AED V & V TOOL COMMANDS .. 60
PDP-11/60 UNIX* Tool Interface Commands 61
Univac 1100 Commands ... 61

APPENDIX A V & V TOOL DEVELOPMENT COMPUTER 79

APPENDIX B REHOSTING THE TOOLS ... 80

APPENDIX C PDP-11/60 INTERFACE HANDLERS .. 86

REFERENCES .. 8a

i v

LIST OF SYMBOLS

AED Automated Engineering Design.
flight software.
sponsorship.

A high level programming language for
Similar to Algol, and developed at MIT under USAF

ASCI I American Standard Code for Information Interchange.

c

assertion a statement which will appear as a COMMENT statement to the AED language
compiler, but to a tool, a logical expression or values to variables.

AVFS automated verification of flight software. An integrated system f o r the
verification of digital flight control software.

baud bits per second

bpi bits per inch

bPS bits per second

byte eight bits

C a general purpose programming language originally designed for and
implemented on the UNIX” operating system on a DEC PDP-11.

CAPS Collins Adaptive Processing System

CAPS-6 Collins Adaptive Processing System model 6

CRT cathode ray tube

CTA CAPS Test Adapter

dall-b an interprocessor link for half-duplex, parallel, direct memory access
data transfer between two PDP-11 computers.

DD-path decision to decision path

DEC Digital Equipment Corporation

decimal decimal, base 10 numbering sysytem

DFCS digital-flight-control system

DFCSVL Digital Flight Control System Verification Laboratory

V

down load

EXEC 8

extr

FCC

FORTRAN

HASP

hex

I FTRAN

I /o

JCL

K

MDICU

octal

pif

R JE

UNIX

upload

VCG

V&V

the action of transferring a computer program or routine from a storage
device to FCC memory through a communications link

a Univac 1100 operating system

extract program

flight-control computer

- Formula Translator, a scientific programming language

Houston Automatic Spooling Program. A collection of computer programs
that provide two-way communications between a front end computer
(PDP-11/60) and a main frame computer (Univac 1100) which serves as the
host

hexadecimal, base 16 numbering system

a FORTRAN preprocessor developed by General Research Corp.

Input /Ou tput

Job Control Language, sometimes called ECL, executive control
language.
a host system

1024 decimal (from "kilo")

Modular Digital Interface Control Unit

base 8 numbering system

pallet interface program (an abbreviation developed at NASA Ames
Research Center)

remote job entry

a trademark of Bell Laboratories. A licensed, general-purpose,
interactive operating system capable of time sharing and of' handling
multiple users

the action of transferring information or blocks of information stored
in FCC memory t o a storage device through a communications link

Verification Condition Generation, see Symbolic Execution.

verification and validation

An assembly like language that identifies the input stream t o

vi

SUMMARY

The user's guide of verification and validation (V&V) tools for the Automated-
Engineering-Design (AED) language is specifically written to update the information
found in several documents pertaining to the automated verification of flight soft-
ware tools. The intent of this document is to provide, in one document, all the
information necessary to adequately prepare a run to use the AED V&V tools. No
attempt is made to discuss the FORTRAN V&V tools since they were not updated and are
not currently active. Additionally, this document contains the current descriptions
of the AED V&V tools and provides information to augment the NASA TM 84276 entitled
"An Integrated User-Oriented Laboratory for Verification of Digital-Flight-Control
Systems--Features and Capabilities.''

The AED V&V tools are accessed from the digital-flight-control-systems verifi-
cation laboratory (DFCSVL) via a PDP-11/60 digital computer.
interface handlers on the PDP-11/60 generate a Univac run stream which is trans-
mitted to the Univac via a Remote Job Entry (RJE) link. Job execution takes place
on the Univac 1100 and the job output is transmitted back to the DFCSVL and stored
as a PDP-11/60 printfile.

The AED V&V tool-

INTRODUCTION

The increased use of digital processors in recent civil and military aircraft's
flight control and management systems is forcing a reappraisal of the tools and
techniques used for avionic-system design, development and test. A joint NASA/
Federal Aviation Administration (FAA) program on the verification and validation
(V&V) of digital-flight-control systems (DFCS) led to the establishment of a veri-
fication laboratory at NASA Ames Research Center. The laboratory includes an inte-
grated, user oriented environment for tool development and analysis, an initial set
of static and dynamic verification tools and a redundant DFCS for use as a test
bed. The verification tools are designed to aid the control engineer and avionic
system designer in the development and checkout of the flight-control system.

An in-house research project to analyze the effectiveness of the static tools
was started and deficiencies in the tools were found. The tools were upgraded to
correct these deficiencies before an independent analysis by industry was to be
started under NASA contract.

1

I This user's guide revises and upgrades part of a previous document, "Automated
Verification of Flight Software--User's Manual" (ref. 1). It will, however, pertain
only to the V&V tools specifically designed for the Automated-Engineering-Design
(AED) Language, which is the language the digital-flight-control-system software
uses in the DFCS verification laboratory (DFCSVL).
the FORTRAN V&V tools were excluded from this document because they were not updated
after delivery of the tools.
engineer" will refer to the same person.

Information and descriptions of

Throughout this document the term "user" and "control

This guide augments the software description of the DFCSVL environment in the
NASA TM-84276 entitled ''An Integrated User-Oriented Laboratory for Verification of
Digital Flight Control Systems--Features and Capabilities" (ref. 2), provides a
description of the tool environment, consolidates the description of each tool,
describes the PDP-11/60 commands necessary to get the tools into execution, and
lists the constraints associated with the tools. Flow diagrams are provided to help
clarify the tool's processing paths.
opmental environment and the rehosting requirements necessary for effective and
successful hosting onto the target computer.
the tool's interface handlers on the PDP-11/60.

Appendices A and B describe the tools' devel-

Appendix C provides a description of

DFCSVL OVERVIEW

The DFCSVL, as seen in figure 1, was established in 1981 at Ames Research
The Ames Research Center to perform research experiments related to the DFCS.

Center's studies in fault-tolerant and V&V software tools used a near-term DFCS
system in the DFCSVL.

DFCSVL Environment

Figure 2 is a block diagram of the functions of the DFCSVL. The DFCSVL
includes a PDP-11/60 digital computer (Environment Computer), a palletized DFCS,
based on the Collins Adaptive Processing (CAPS) model 6)), a CRT terminal, and a
remote computer (Software Tools Computer).
computer which is located at the Pacific Missile Test Center facility in Point Mugu,
California (referred to as the Point Mugu facility) and accessed via a Remote Job
Entry (RJE) communications link between the DFCSVL and Point Mugu.

The V&V tools are hosted on the Univac

Environment Computer- The "environment computer" is a PDP-11/60 digital com-
puter with 256K words of memory, two disk drives with a storage capacity of 52
Mbytes, one 1600 bpi density tape drive, one 600-line/min line printer, and three
CRT terminals connected to the system. For further details refer to section 5 of
reference 2.

Remote Link- The Univac 1100 is connected to the PDP-11/60 through a RJE
communications (dataphone) link or a standard dataphone link as seen in figure 3.

2

Figure 1.- The DFCSVL.

The RJE communications link uses a Bell model 208B-L1B data set operating at a
transmission and receive rate of 4800 bits/sec (bps) in a "dial-up" mode and permits
the PDP-11/60 to function as a RJE station.
Houston-Automatic-Spooling program's (HASP) multileaving, nontransparent transmis-
sion mode at 400 bytes/block and all transmission over the link are ASCII code print
files. Consequently, load-module files received from the Univac must be reconverted
to a load-module executable code prior to any further use.

The RJE link currently uses the

For communications as a demand terminal, the DFCSVL has a Racal-Vadic acoustic-
coupler modem (VA/VC3412/13) capable of transmitting o r receiving at either 300 or
1200 bps .

DFCSVL Software- The PDP-11/60 uses the UNIX" operating system with special
interface handlers written in C programming language to aid the control engineer in
setting up the job stream for the Univac 1100. With simple UNIX commands, the
control engineer is capable of selecting and exercising any V&V tool.

3

SOFTWARE TOOLS
COMPUTER

-300-1200 bps COM-LINK b

4800 bps RJE/HASP
-NONTRANSPARENT *

MU LTI LE AV I NG

Figure 2.- Block diagram of the DFCSVL.

NASA Ames
ENVIRONMENT
COMPUTER

MODEM

RJE

RJE HARDWARE
GCS + CTS
TRANSBOARD

--_---
RJE SOFTWARE
RTP LEVEL 4R1
BLOC KS I2 E :

WSllOO = 0
404 bytedblock

Figure 3 . - RJE link.

Univac Environment

The Univac environment is off site and consists of a Univac 1100 operating
under the EXEC 8 operating system with an RJE communications link running under
HASP. The Univac hosts the AED processors as well as the V&V tools.

4

Requirements for the off-site Univac are:

1. Hardware
a. Univac 1100/63 computer
b. Tape units; 1600-bpi and 6250-bpi capabilities
c. Disk units; mass-storage medium

2. Software
a. EXEC 8 level 38R5A operating system
b. AED processors; CAPS cross compiler

CAPS cross assembler
AED link editor
tape transmission program

(These processors execute under the EXEC 8 system and were originally
developed and executed under a Univac 1100 using the EXEC 8 operating
system.)

c. Software V&V tools reside and execute on the Univac 1100

The system will receive and return batch jobs across the RJE link which originates
at Ames Research Center. The system will also provide the hardware and computer
time to execute AED and FORTRAN IV programs.

TEST I NG

The verification of the software for DFCS is usually the responsibility of
control engineers and is based on the analysis of data obtained from testing the
flight software in closed-loop, real-time simulations (fig. 4). Real-time testing
is a well-established method which enables all type of errors to be detected, from
specification to coding. However, real-time simulation testing is costly and cannot
provide consistent and quantifiable test coverage.

AED V&V TOOL DESCRIPTIONS

An alternative to the real-time conventional testing method is for the user to
check the software he has written by submitting one or more modules for analysis by
the AED V&V tools so that errors are detected before they propagate through the
entire flight software. The V&V tools also aid the user while creating the DFCS
software code and documentating the flight software. The source code of the program
is assumed to have been compiled and has no compiler detected errors when using
these V&V tools. The V&V tools can only detect possible error conditions, but
cannot correct them.

Figure 5 shows how the V&V tools augment the developmental cycle of software
analysis and testing. The shaded blocks indicate the V&V tool features. The user's

5

CORRECT
t * AED SYNTAX ERRORS

COMPl L ER
B

RELOCATABLE

REAL-TIME,
CLOSED- LOOP
EXECUTION

t CORRECT
AED ASSEMBLY ERRORS
ASSEMBLER

\
* \ -

LISTING +

LISTING +
DIAGNOSTICS

1 4 AEDLINK 1 ILOADERRORS
LOADER

c

Figure 4.- Testing by real-time simulation.

6

J

t / f

\

7

source code is analyzed by the static V&V tools to assist in finding inconsistencies
in the use of the variables and in the structure of a program, and produces a static
analysis or documentation report. Assertions, which are logical statements yielding
either a true or false condition, can be added to the source text to further detect
static or dynamic errors. An assertion statement is interpreted by the AED compiler
as just another comment statement.

The AED dynamic tools automatically insert probes at appropriate points in a
module to determine testing coverage, to insert assertions into a module to check on
assertion violations, or to trace variables in the code. During dynamic test, these
probes record data which are used to report execution coverage, assertion viola-
tions, execution time, and the values of important variables. The data recorded are
stored in CAPS memory for later analysis by the report generator on the PDP-11/60.
This information is used with other tests to indicate the focus of retesting which
is discussed in more detail under "Symbolic Execution.tt

The tools are used to perform formal verification of formulas and assertions
via symbolic execution.
input. The procedure for formal verification is to execute the program "symboli-
cally"; that is to use symbols as input data rather than specific numbers. The
program is verified or "proven" correct for a wider range of its variables than is
practical to assign during the execution test.

When a program is executed, numerical data is supplied as

During the analysis by the static INTERFACE tool, an interface library is
created and maintained as shown in figure 5. This interface-library file is the key
to multiple module interface checks.
changes in interface properties; e.g., addition or deletion of parameters, changes
in the type or use of parameters, changes to COMMON, and changes to invocations.

The INTERFACE tool analyzes each module for

The following sections contain more complete details of the full power of the
AED V&V tools and how to use them.

Static Tools

Static Tools encompass the static analysis tools and the tools designed specif-
The reason for this grouping is consistency with ically for documentation purposes.

the UNIX command. When the tool is documentation type, the tool is identified as
such.

Static analysis tools are designed to uncover inconsistencies in the use of
variables and in the structure of the module. An inconsistency indicates the exis-
tence of an error or the possibility of an error.

Static analysis tools perform: set and use checking, loop checking, type
checking, path checking, interface checking, and input/output (I/O) checking.
Detailed descriptions and sample outputs are shown as each tool is discussed in this
section.
static tools.

The general format presented here is of the UNIX command to exercise the

8

NAME
static - Static consistency checking/documentation

SYNOPSIS
static [-c class] [-mpC] [-mtb] [-dgilstuvxz] [-r filename.dat1 AED-
file ...(files must end in [.aed], [.fof] or [.isd])

DESCRIPTION
The static command invokes the V&V tool static analyzer on the Univac
1100. It accepts publicly readable files whose file-names end with .aed
for AED source modules; .fof for file-of-files or .isd for files residing
on the Univac computer site. Files ending in .aed o r .fof may be sent at
the same time. Files ending in .isd must all be sent together and must
reside on the Univac 1100 computer. The module is analyzed and outputs
are routed as specified by the following flag arguments.

Output listings from the Univac are routed to the user's directory on the
PDP-11/60 with a file name consisting of the first four characters from
the first file name with a ".rpt" extension attached. Each tool presents
different types of output listings.

The following arguments are interpreted by static:

-C Univac 1100 job priority, which has priority ranges from A,
the highest priority, through Z, the lowest priority. The
default is class A (standard).

-mp#

-mtb

This option allows the user to specify the maximum number of
pages for the Univac 1100 printout. The default number of
pages used by this command is computed based on the number of
static-tool options selected and the number of files (AED
modules), approximately 16 pages for one option and one file;
e.g., -mp50.

This option allows the user to specify the maximum time for
execution on the Univac 1100. A number preceded by an ' s '
(e.g., -mts40) is assumed to be in seconds. The default time
limit used by this command is computed based on the number of
static tool options and the number of files (AED modules),
approximately 60 sec for one option and one file.

-dgilstuvxr Each option selects an associated tool. The description of
each tool for the type of report it generates is presented in
detail in the respective sections on options.

9

DISPLAY/DEBUG option, the -2 option, allows for displaying or
debugging the run stream created by the option selected or
defaulted. In this example, the default option -1 is invoked
as well as the display/debug option. The run stream is
printed or typed to the terminal in which the UNIX command was
given.

NOTE
Source files manipulated by this command must be publicly readable in
order for them to be copied to the RJE queue or accessible on the Univac.

DIAGNOSTICS
The job may successfully be sent to the Univac 1100, but fail to run for
many reasons,
messages why the run failed. If it is not obvious, seek a user consultant
for diagnostic help.

The user's output listing will contain one or mQre cryptic

DISPLAY/DEBUG EXAMPLE:

static -z file.aed

This command displays the Univac run stream for file
"file.aed" on the input terminal where the UNIX command was
given as seen below.

@RUN Univac run card
@ASG,AX INSERTS.
@FREE AVFS$$.
@ASG ,T AVFS$$.
@ELT,I AVFS$$.FILE

THIS IS THE BEGINNING OF A DUMMY AED SOURCE FILE

AED STATEMENTS USUALLY FOLLOW MERE

THIS IS THE END OF THE DUMMY AED SOURCE FILE
@HDG,X *** AED ENHANCED LISTING, MODULE HDGSEL ***
@XQT GRC*LIST.LIST
@ADD,E AVFS$$.FILE
@HDG,X *** UPDATED AED STATEMENT PROFILE ***
@XQT AMES*PROFILE.PROFILE
@ADD, E AVFS$$. FILE
@FIN

10

I +

4

L

-d option: MODULE DEPENDENCIES.-
UNIX COMMAND EXAMPLE:

static -d alatcom.aed

This command generates a module-dependency report for the AED
module alatcom.

UNIVAC COMMAND EXAMPLE:

@XQT AMES*DEPEND.DEPEND
@ADD,E AVFS$$.filename

The -d option generates the module-dependencies documentation report. This option
is sometimes called "invocation summary" report in the documents listed in refer-
ence 1. The dependency report shows the dependencies of the modules on the inter-
face library. All modules are listed which invoke a module and all invocations in a
module. The statement
line number of where invocations to a given module occur is found in the invocation
report or the global cross-reference report.

Figure 6 shows a dependency report for the module ALATCOM.

*** UPDATED AED DEPENDENCE MATRIX ***

MODULE DEPENDENCE REPORT MODULE A.LAT.COM

PROCEDURE DEPENDENCY PAGE 1

A. L AT. COM IS INVOKE BY -NONE
AND INVOKES -NONE

Figure 6. Dependency report.

-g option: GLOBAL CROSS REFERENCE-

UNIX COMMAND EXAMPLE:
i

static -g alatcom.aed

This command generates a global cross-reference report for the
AED module alatcom.

1 1

I UNIVAC COMMAND EXAMPLE:

@XQT AMES*GBLXREF.INITIAL
@XQT AMES*GBLXREF.GLOBAL
@ADD,E AVFS$$.filenarne
@XQT AMES*GBLXREF.FINAL

The -g option generates a global cross-reference documentation report.
cross-reference report is a multimodule report showing the statement number where
each global variable is referenced. The report is alphabetically ordered by the
name of the global variable in the first column.
of the variable, EXTERNAL or COMMON.
ble are alphabetically ordered in the module column.
statement line numbers within each module where the variable is referenced. The
example shown in figure 7 is a global cross-reference of a single module called
ALATCOM.

The global

The next column denotes the scope
The modules which reference the global varia-

The last column contains the

*** UPDATED AED GLOBAL CROSS REFERENCE ***
GLOBAL CROSS REFERENCE MULTIMODULE REPORT PAGE 1

NAME SCOPE MODULE USED/SET (- INDICATES SET)

A. LAT . COM
AL. TRK. M
ARCTAN
DISAGREE.0
DLIMIT
FLP . GT. 30
FLP . GT .4
HEADING
1GNORE.OVRF
KT AS
LAT.ACC.LP
LAT.ACC.PTR
LAT.ACC.VLP
MAJORITY.0
PROTECT.OVRF
ROLL. PTR
VOTER
XOR

EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
E XT E RNA L
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL

A. LAT .COM
A. LAT . COM
A. LAT. COM
A. LAT. COM
A. LAT .COM
A, LAT . COM
A. LAT . COM
A. LAT . COM
A. LAT . COM
A, LAT. COM
A. LAT . COM
A. LAT. COM
A. LAT . COM
A. LAT .COM
A. LAT . COM
A. LAT. COM

A. LAT . COM

16
27 43 43
22 42
42
30 42
-20 43 43
-21 43 43
-22 23 43 43

-35 43 43
28 -30 30 33 43 43
24 43 43
-33 43 43
20 21 42
42
25 43 43
14 24 25
42

42

Figure 7.- Global cross-reference report.

12

-i option: INTERFACE-

-

UNIX COMMAND EXAMPLE:

s t a t i c -i aforexec.aed

T h i s command generates an interface analysis report for the
AED module aforexec.

UNIVAC COMMAND EXAMPLE:

@XQT AMES*INTER.INTER
@ A D D , E AVFS$$.filename

The -i option generates an interface-library report.
tool uses a l ibrary f i l e on the Univac to check consistency i n number of parameters
and type of the module.
l ibrary.

The AED interface analysis

I t a l so checks for changes to the interface via the
Figure 8 shows t h e interface processing flow on the Univac.

Figures 9 and 10 depict the interface report outputs. In figure 9 , the inter-
face report gives the module names and procedures i n the column identifed as "SYMBOL
NAME," then the type of change i n the next column, and additional information i n the
l a s t column. In figure 10, the second part of the Interface report presents the
interface analysis en t i t l ed "PROCEDURE CALL CHECKING REPORT.'' The f i r s t column
ident i f ies the name of the procedure called.
number where the procedure c a l l was made. The l a s t column ident i f ies the error
description from the analysis of the module.

The second column ident i f ies the l i n e

AED TEXT

BEGIN
DEFINE PROCEDURE ----

BEG I N

END
END FIN1

INTERFACE LIB

INTERFACE CREAT
TOOL INTERFACE LIB

i

Figure 8.- Interface-processing flow.

*** UPDATED AED INTERFACE REPORT ***
I N T E R F A C E R E P O R T

SYMBOL NAME TYPE OF CHANGE OTHER
~~ ~

A.FORE.EXEC

A.FORE.EXEC

NEW MODULE

NEW PROCEDURE

1 ENTRY POINT(S)
NO BLANK COMMON

0 FORMAL PARAM(S)

Figure 9.- Interface report.

14

P R O C E D U R E C A L L C H E C K I N G R E P O R T

I

NAME OF CALLED PROCEDURE LINE MESSAGE

MAJORITY.0

SPEED. COM

ASNB I T

ASNB IT

SENS . MON

B.ALT.XMIT

33 NOT FOUND ON INTERFACE LIBRARY

47 NOT FOUND ON INTERFACE LIBRARY

50 UNABLE TO VERIFY CORRECT DATA TYPE
OF THE CONSTANT IN POSITION 1

50 UNABLE TO VERIFY CORRECT DATA TYPE
OF THE CONSTANT IN POSITION 2

54 NOT FOUND ON INTERFACE LIBRARY

99 NOT FOUND ON INTERFACE LIBRARY

A.TIME.SYNC 100 NOT FOUND ON INTERFACE LIBRARY

SUMMARY OF CALL CHECKING

TOTAL PROCEDURE CALLS PROCESSED = 41
PARAMETER LIST LENGTH ERRORS = o
PARAMETER TYPE CLASH ERRORS = o
CALLS IN WHICH NOT ALL PARAMETERS VERIFIED = 14
CALLS FOR WHICH NO CHECKING WAS PERFORMED = 0
CALLS TO PROCEDURES NOT ON INTERFACE LIB = 31

Figure 10.- Procedure call checking report.

-1 option: ENHANCED LISTING AND STATEMENT PROFILE-

UNIX COMMAND EXAMPLE:

static -1 alatcom.aed

This command generates an enhanced listing of the AED source
code and an AED statement profile for module alatcom.aed.

15

UNIVAC COMMAND EXAMPLE:

@XQT GRC*LIST.LIST
@ADD,E AVFS$$.filename
@XQT AMES*PROFILE.PROFILE
@ADD,E AVFS$$.filename

The -1 option generates an enhanced listing, sometimes called indented listing or
pretty print, and statement profile, o r profile, report. This is the DEFAULT option
for the static command.

c

No changes were made to the enhanced listing tool. The enhanced listing is a
source listing which shows the statement line number and the automatically indented
source code. All references to statements in other reports by the V&V tools are
keyed to statement line numbers and module name.
indicates the control structures and improves readability, not only to the original
programmer, but especially to someone unfamiliar with the code. Figure 1 1 illus-
trates a sample listing for an AED module.

The indented listing clearly

*** AED ENHANCED LISTING, MODULE [name] ***
16 DEFINE PROCEDURE A.LAT.COM TOBE
17
18 COMMENT ITERATION RATE = 5 / SEC ;
19 BEGIN
20 FLP.GT.30 = MAJORITY.O(l0) ... MAJORITY OF 30 DEG FLAP SWITCHES ;
21 FLP.CT.4 = MAJORITY.O(l1) ... MAJORITY OF 4 DEG FLAP SWITCHES ;
22 HEADING = ARCTAN(HDG.SIN,HDC.COS) ... GET HEADING ;
24 LAT.ACC = VOTER(LAT.ACC.PTR) ... VOTE LATERAL ACCELERATION ;
25 ROLL = VOTER(ROLL.PTR) ... VOTE BANK ANGLE ;
26 Xl =

28 27
29 ELSE .O ... HOLD BY GROUNDING SWITCH ;
31 WASHOUT INTEGRATOR LIMITED AT 2 DEG /
32 SEC ;
33 LAT.ACC.VLP = LAT.ACC.LP/.858667;
34 TAS = TAS.MS . .. BUFFER TAS ;
35 KTAS = ... GAIN PROGRAMER / /
36 IF TAS > .439453 ... TAS>450 KTS / /
37 THEN .500000
38 ELSE IF TAS > .146484 . . . TAS>150 KTS / /
39 THEN TAS/ .878906
40 ELSE .166667;
4 i CD.19 = SEL.HDG;

23 CD.13 = HEADING ... TRANSMIT TO OTHER CHANNELS ;

IF AL.TRK.M OR (ABS(R0LL) < .026178) ... ROLL < 3 DEG / /
THEN LAT . ACC* .858667+ROLL*. 429368-LAT. ACC . LP

30 LAT. ACC . LP = DLIMIT(LAT . ACC. LP+X 1 * .166667D-2, .133333D- 1) . . .

I

Figure 11. Enhanced listing.

16

The AED statement-profile report lists the name of the module and the number of
lines at the top of the report, as shown in figure 12. The module name is the name
of the procedure contained in the module. The number of lines includes the lines
from any inserts and blank lines.

*** UPDATED AED STATEMENT PROFILE ***

STATEMENT PROFILE
MODULE A.LAT.COM
NUMBER OF LINES 103

NUMBER PERCENTAGE OF LINES

DECLARATIONS
ARRAY
BEAD
COMMON
COMPONENT
DEFINE
EXTERNAL
INSERT
PACK
PRESET
PROCEDURE
SWITCH
SYNONYM
VARIABLE

ASSIGNMENT
COMMENT
COMPOUND
IF
FOR
GOT0
PROCEDURE
WHILE
ASSERT

STATEMENTS

46
1
0
0
0
1

10
3
0
0
8
0
1

25
32
12
18

1
0
0
0
0
0
0

44.7
1 .o
.o
.o
.o

1 .o
9.7
2.9

.o

.o
7.8

.o
1 .o

24.3
31.1
11.7
17.5

1 .o
.o
.o
.o
.o
.o
.o

Figure 12.- Statement profile report.

AED statements are classified into declarations and statements. While there
can be more than one declaration or statement per line, typically there is less than
one of each per line.
ments will be less than the number of lines in most cases.

Hence, the number of declarations plus the number of state-

17

Under declarations, there are declarations for arrays, beads, common, compo-
nents, defines, externals, packs, presets, procedures, switches, synonyms, and
variables. Each of these is counted separately. Inserts are listed under declara-
tions, but are not included in the count for declarations. In AED, the inserts
normally contain declarations. The line percentage is computed on the basis of the
total number of lines printed on top of the profile report.

Under statements, there are statements for assignment, compound, if, for, goto,
procedure, and while categories, A line can contain several categories. For exam-
ple, a statement consisting of a BEGIN ... END construct is counted as a compound
statement. Another example of a statement containing several categories is the IF
statement. It usually contains a BEGIN. ..END compound statement as well as a proce-
dure invocation. Comments and assertions categories are listed under statements and
are counted separately.

i

-s option: SYMBOLS (SET/USE).-

UNIX COMMAND EXAMPLE:

static -s alatcom.aed

This command generates a SET/USE listing for module
alatcom.aed.

UNIVAC COMMAND EXAMPLE:

@XQT AMES*SETUSE.SETUSE
@ADD,E AVFS$$.filename

I The -s option generates a symbols report, also called SET/USE.
of an AED source module for SET/USE checking analyzes the variables used before they
are set to a value, or set and not used. When 1/0 assertions are added t o the
source module, a complete static analysis check is made with the SETNSE tool.

The static analysis
1

Input/Output assertions are used in a static analysis to check for consistency
between the intended use of a variable and the actual use of a variable. Variables
which provide input data to a module should be asserted with an input assertion.

An input assertion has the form:

COMMENT INPUT* <type> <variable>;

An example of an input assertion is

COMMENT INPUT* REAL HEIGHT;

where the variable named HEIGHT is an input t o the module.

18

Variables which provide output data from a module should be asserted with an
output assertion. An output assertion has the form

COMMENT OUTPUT* <type> <variable>;

Variables which are used both as input and as output should have both
assertions.

The SET/USE report is generated for each module analyzed. The symbols are
ordered alphabetically, scoped, classed, and their use analyzed. Symbols which have
the scope LOCAL are known only within the module reported on. Other symbols with
EXTERNAL or COMMON classification are known outside the module. Each symbol is
organized into its class: variable, array, procedure, and type. The use column
provides a summary of how the symbol is used in the module. Figure 13 shows an AED
SET/USE Report.

-t option: CALLING TREE-

UNIX COMMAND EXAMPLE:

static -t pitchdis.aed

This command generates the calling-tree report for module
pitchdis.aed.

UNIVAC COMMAND EXAMPLE:

@XQT AMES*CTREE.CTREE
@ADD,E AVFS$$.filename

The -t option generates the calling-tree documentation report, also called invoca-
tion bands. This report shows the selected module in a calling tree, as shown in
figure 14. At the center is the specified module. The left-side modules are t h e
calling modules. A summary of this
report is found in the invocation-summary report. The statement numbers containing
invocations are found in the global cross-reference report.

The right-side modules are the called modules.

A word of caution for those who will not be using the DFCSVL-type environment.
To process multimodules by the calling-tree tool, the modules must be concaten-
ated. To accomplish this task, successive Univac commands "@ADD filename" must be
used after the @XQT AMES*CTREE.CTREE.

19

*** UPDATED AED SETUSE REPORT ***
SET/USE ANALYSIS AND PARAMETER REPORT MODULE A.LAT.COM PAGE 1

1ST LAST TOTL ASSERTED ACTUAL
NAME SCOPE CLASS STMT STMT USES USE USE

A. LAT .COM
AL . TRK. M
ARCTAN
CD. 13
DISAGREE.0
DISCRETE.IN
DISCRETE.OUT
DLIMIT
FLP . GT. 30
FLP . GT .4
HDG .COS

EXTERNAL
EXTERNAL
EXTERNAL
LOCAL
EXTERNAL
LOCAL
LOCAL
EXTERNAL
EXTERNAL
EXTERNAL
LOCAL

PROCEDURE
VARIABLE
PROCEDURE
VARIABLE
PROCEDURE
SYNONYM
SYNONYM
PROCEDURE
VARIABLE
VARIABLE
VARIABLE

16 16 1
27 43 3 NONE INPUT
22 42 2
23 43 3
42 42 1
42 42 1
42 42 1
30 42 2
20 43 3 NONE OUTPUT
21 43 3 NONE OUTPUT
22 43 3

-
- VARIABLE HDG.COS

SET/USE ERROR -
USED BEFORE BEING ASSIGNED A VALUE -

~~ ~

HDG . SIN LOCAL VARIABLE 22 43 3

-
- VARIABLE HDG.SIN

SET/USE ERROR -
USED BEFORE BEING ASSIGNED A VALUE -

HEADING
1NST.ARRAY
KT AS
LAT. ACC
LAT.ACC.LP
LAT.ACC.PTR
LAT.ACC.VLP
ROLL
ROLL. PTR
SEL. HDG

EXTERNAL
EXTERNAL
EXTERNAL
LOCAL
EXTERNAL
EXTERNAL
EXTERNAL
LOCAL
EXTERNAL
LOCAL

VARIABLE
ARRAY
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE

22
42
35
24
28
24
33
25
25
41

43 4 NONE OUTPUT
42 2 NONE NONE
43 3 NONE OUTPUT

43 6 NONE BOTH
43 3 NONE INPUT
43 3 NONE OUTPUT

43 3 NONE INPUT

43 3

43 4

43 3

-
- VARIABLE SEL.HDG

SET/USE ERROR -
USED BEFORE BEING ASSIGNED A VALUE -

Figure 13.- SET/USE report .

20

NAME
1ST LAST TOTL ASSERTED ACTUAL

SCOPE CLASS STMT STMT USES USE USE

TAS . MS LOCAL VARIABLE 34 43 3

-
- VARIABLE TAS.MS

SETNSE ERROR -
USED BEFORE BEING ASSIGNED A VALUE -

VOTER
x1

EXTERNAL PROCEDURE 14 25 3
LOCAL VARIABLE 26 43 3

Figure 13.- Concluded.

*** UPDATED AED CALLING TREE ***
CALLING TREE MODULE PITCH.DIS

LEVEL -9 -a -7 -6 -5 -4 -3 -2 -1 0 +1 +2

PITCH.DIS
A.FORE.EXEC ASNB IT

AR1NC.C.
NAV.DIS.VAL
PITCH.NUMS

Figure 14.- Calling-tree report.

-u option: UNITS-

UNIX COMMAND EXAMPLE:

static -u voter.aed

This command generates the units analysis report fo r module
voter.aed.

21

UNIVAC COMMAND EXAMPLE:

@XQT AMES*UNITS.UNITS
@ADD,E AVFS$$.filenarne

The -u option generates the units analysis report.
into a program so consistency checks are made on the use of units.
for which units are specified has units declared in the form

Units assertions are inserted
Each variable

COMMENT UNITS* <variable> = <units expression>;

For example, t o state that the variable named SPEED has units of FEET/SEC, and TIME
has units of SEC, type in

I COMMENT UNITS* SPEED = FEET/SEC;
COMMENT UNITS* TIME = SEC;

To state that the variable named DIST has units of METER,

COMMENT UNITS* DIST = METER;

The units analyzer ensures the operations on the variable

type in

, which hav if ied
units, is done in a consistent manner. That is, if an assignment was made such as

SPEED = DIST * TIME;
the units analyzer would report a units error of the form:

*****UNITS ERROR*****
FEET/SEC=METER*SEC

Units are combined symbolically across multiplication and division to form new
units. Checks are made across addition, subtraction, and assignment operations to
ensure units consistency.
tool. Currently the tool is incapable of handling embedded operations such as an
argument in the calling list of a procedure, or embedded by parentheses.

Figure 15 shows the flow diagram for processing the units

After the units analysis is complete, the units for each variable is listed in
the units table.

Figure 16 shows units specified for speed, distance, time, acceleration, force,
and work. The error messages are displayed in the source code listing when incon-
sistent units occur during analysis. The units table summarizing the units asser-
tions, follows the source-code listing.

22

AED TEXT

UNITS
ASSE R T I ONS

BEGIN
DEFINE PROCEDURE ----

BEGIN
COMMENT UNITS* ----

~ C O M M E N T UNITS* ----

END FIN1 k--
UNITS
REPORT

Figure 15.- Units-processing flow.

23

*** UPDATED AED UNITS ANALYSIS ***

39 DEFINE PROCEDURE LOAD.ARRAYS(L,M,A) WHERE INPUT. INTEGER L,M;
40 INTEGER ARRAY A TOBE
41 BEG IN
42 COMMENT +*+** TOOL 12 TEST +~+w**+c+*+*++*Y*++++,*+ ;
43 COMMENT UNITS* SPEED = FEET/SEC ;
44 COMMENT UNITS* DIST = METER ;
45 COMMENT UNITS* TIME = SEC ;
46 COMMENT UNITS* ACCEL = FEET/(SEC*SEC) ;
47 COMMENT UNITS* FORCE = POUND ;
48 COMMENT UNITS* WORK = FEET*POUND ;
49
50 SPEED = DIST * TIME ;
*****UNITS ERROR*****
FEET/SEC=METER*SEC
51 WORK = FORCE * DIST ;
*****UNITS ERROR*****
FEET*POUND=METER*POUND
52 FORCE = WORK * DIST ;
*****UNITS ERROR*****

53 ACCEL = SPEED / TIME ;
*****UNITS ERROR*****
FEET/SEC*SEC=FEET/SEC/SEC
54 DIST = SPEED * TIME ;
*****UNITS ERROR*****
METER=FEET
55

57

POUND=FEET*METER*P~UND

56 COMMENT ***** END UNITS TOOL TEST . ;

*** UPDATED AED UNITS ANALYSIS ***
UNITS TABLE

SPEED
DIST
TIME
ACCEL
FORCE
WORK

FEET/SEC
METER
SEC

POUND
FEET*POUND

FEET/SEC*SEC

Figure 16.- Units repor t .

24

-v option: INVOCATIONS-

UNIX COMMAND EXAMPLE:

static -v aforeinit.aed

This command generates the INVOCATION-documentation report for
module aforeinit.aed

UNIVAC COMMAND EXAMPLE:

@XQT AMES*INVOKE.INVOKE
@ADD,E AVFS$$.filename

The -v option generates the INVOCATION-documentation report. The report shows all
invocations, along with the statement-line numbers, to and from the specified
module. This report is useful for examining actual parameter usage. Figure 17 is
an example of the INVOCATIONS Report.

*** UPDATED AED INVOCATIONS REPORT ***
INVOCATIONS REPORT MODULE A.FORE.INIT PAGE 1

INVOCATIONS FROM WITHIN THIS MODULE

PROCEDURE A.FORE.INIT
STMT 20 CLEAR.FAIL0;

INVOCATIONS TO THIS MODULE

PROCEDURE A.FORE.INIT
-IS NOT CALLED

Figure 17.- Invocations report.

25

-x option: CROSS REFERENCE.-

UNIX COMMAND EXAMPLE:

static -x altitude.aed

This command generates the cross-reference documentation report
for module altitude.aed

UNIVAC COMMAND EXAMPLE:

@XQT AMES*XREF.XREF
@ADD,E AVFS$$.filename

The -x option generates the cross-reference documentation report (fig. 18).
report provides a "symbol" to cross reference each module analyzed (fig. 18).
this guide the definition of symbol means an AED variable. All local symbols, exter-
nal symbols, common symbols, and parameters referenced in the module are
included. Symbol names are ordered alphabetically in the first column. The scope
column indicates symbols known only in this module (LOCAL), external symbols
(EXTERNAL), and common symbols (COMMON), and parameters (PARAMETER). The CLASS
column identifies the symbol as a variable, a procedure, or a synonym. The TYPE
column identifies the symbol type as a long, real, boolean, integer, or pointer.
The last four columns identify every occurrence of a symbol by line number and if
the symbol was used or referenced, set, or defined in a particular line.

This
For

-r option: REACHING SET-

UNIX COMMAND EXAMPLE:

static -r ctrl.dat aforexec.aed

This command generates the REACHING SET analysis report for
module aforexec.aed within the range specified in "ctrl.dat".

UNIVAC COMMAND EXAMPLE:

@XQT AMES*REACH.REACH
@ADD,E AVFS$$.filename

The -r option generates the REACHING-SET analysis report.
the REACHING-SET option, executes the module retesting capability of the V&V
tools. When a set of untested decision-to-decision paths (DD-paths) has been iso-
lated, the V&V tools help the user identify the sections of code f o r further test-
ing.
statement-line number and the ending-statement line number bounding the DD-path

The analysis specified by
I

To reach the desired DD-path number, the user specifies the beginning
1

26

*** UPDATED AED SINGLE MODULE CROSS REFERENCE ***
CROSS REFERENCE MODULE ALTITUDE PAGE 1

NAME SCOPE CLASS TYPE USED OR REFERENCED /SET(S)/DEFINED(D)

ALT . BIAS LOCAL VARIABLE LONG
ALT.CAP.COND LOCAL VARIABLE BOOLEAN
ALT.CAP.M EXTERNAL VARIABLE BOOLEAN
ALT.CAP.M.S LOCAL VARIABLE BOOLEAN
ALT. ERR LOCAL VARIABLE LONG
ALT.HLD.COND LOCAL VARIABLE BOOLEAN
ALT.HLD.M EXTERNAL VARIABLE BOOLEAN
ALT.NORM.SEL LOCAL VARIABLE BOOLEAN
ALT. RATE LOCAL VARIABLE LONG
ALT. REF LOCAL VARIABLE LONG
ALT.SEL.M EXTERNAL VARIABLE BOOLEAN
ALTITUDE EXTERNAL PROCEDURE -
ANALOG.IN LOCAL SYNONYM -
ANALOC.OUT LOCAL SYNONYM -

SEL. ALT LOCAL VARIABLE REAL
SEL.ALT.ERR LOCAL VARIABLE LONG
TM.M EXTERNAL VARIABLE BOOLEAN
VERSINE EXTERNAL VARIABLE REAL
VOTER EXTERNAL PROCEDURE REAL
X1 .D LOCAL VARIABLE REAL
X1 .D.S LOCAL VARIABLE REAL
X2.D LOCAL VARIABLE LONG
X3.D LOCAL VARIABLE LONG
X3.D.S LOCAL VARIABLE LONG
X4.D LOCAL VARIABLE LONG

X5.D LOCAL VARIABLE LONG
X6 LOCAL VARIABLE REAL
x7 LOCAL VARIABLE REAL
x7.s LOCAL VARIABLE REAL
X8.D LOCAL VARIABLE LONG
X9.D LOCAL VARIABLE LONG
XOR EXTERNAL PROCEDURE BOOLEAN

82s 83
57s 61
45 65
114 121
73s 110s
55s 59
30 70
40s 42
54s 57
66s 72s
135 135D
21D
134D
134D

50 135D
52s 55
109 135
135 135D
19 27
29s 33
33 34s
33s 33
87s 91
91s 95
90s 95s

92s 99s
73s 76
28s 29
74 75s
74s 74
85s 87

135D

134D

85
135D
79
132s
110
71
107
135D
83
73

135D

132 135 135D
135D
1 1 1 135D
135D
135 135D

135D
135D

135D

135D
57 66 82 83

62
34 135D
135D
54 1 1 1 135D
95 97 113s 117
97s 117s 123 125s
95 98 116s 122s

99 102 118s 127s

74 75 135D

85 135D

135D

135D

135D

Figure 18.- Cross-reference report.

27

number in a file with a unique file-name terminator "---- .dat", such as "ctrl.dat"
as just shown.
report of paths from the specified beginning statement line number to the ending-
statement line numbers. The flow diagram for processing the reaching set t oo l is
seen in figure 19.
reaching set in the AED source code. In figure 21, the reaching-set report
summarizes the statements line numbers within the reaching set.

Once specified, the REACHING-SET tool generates the reaching-set
I

~ A reaching-set listing (fig. 20) shows the DD-paths within the

%static -r file.dat file.aed

file.dat file.aed

STATIC INTERFACE
HANDLER

UNIVAC RUN
STREAM

NOTE:

ONE-LINE FORMAT
(215)
NNNNNXXXXX

A A A A 5 A A 1 5

WHERE: A IS A BLANK

NOTE: NO COMMA TO
SEPARATE THE
FIELDS

e.g.

Figure 19.- Reaching-set processing flow.

28

*** UPDATED AED REACHING SET ***

20 DEFINE PROCEDURE A.FORE.EXEC TOBE
21 BEGIN

PATH NUMBER = 1
22 A.FORE.INIT0;
23 WHILE TRUE
24 DO BEGIN ... INFINITE FOREGROUND LOOP / /
25 ... PATH1 , PATH2 , PATH3 , PATH4 ITERATE PATH NUMBER = 2

26
27

28
29

30
31
32
33

34
35
36
37
38

39
40
41
42
43

44

PATH NUMBER =

PATH NUMBER =

PATH NUMBER =

ONCE EVERY 200 MSEC / / ... PATH13 AND PATH24 ITERATE ONCE EVERY
100 MSEC / / ... PATH 1234 ITERATES EVERY 50 MSEC / /

TOTAL.TIME = TOTAL.TIME+*OOOOOOOIA;
ON.GND = MAJORITY.O(S);
IF PATH.NUM = = 1 OR PATH.NUM = = 3
THEN BEGIN

3
CMD.SEL = REFBIT(12,DI.WO) AND REFBIT(12,DI.WO.MB);
CWS.SEL = REFBIT(12,DI.Wl) AND REFBIT(12,DI.Wl.MB);
A.LAT.COM() ;
END

ELSE BEGIN
4

AL.TRK.M = (AL.TRK.M OR AL.TRK.RDY OR REFBIT(1,
MDE.WRD.1.OA) AND 0.BOX.V) AND NOT GA.M;
A.LONG.COM();
SPEED.COM();
END ;

5
GOTO PATH(PATH.NUM);

***** WARNING: AT STATEMENT 44: GOTO SWITCH "PATH.NUMfl
***** CANNOT BE PROCESSED IN REACHING SETS

45 PATH1 :
PATH NUMBER =

46
47
48

ASNBIT(FALSE, 15, DO.BUFF. 3) ;

DO.W3 = D0.BUFF.3;
6

SENS.MON0;
GOTO PATH13;

Figure 20.- Reaching-set listing.

29

*** UPDATED AED REACHING SET ***
REACHING SETS FOR MODULE A.FORE.EXEC

1. REACHING SET FROM STATEMENT 22 TO STATEMENT 47

STMTS IN REACHING SET NO. 1 : 22 23 24 25 26 27 28
29 30 31 32 33 34 35
36 37 43 44 45 46 47

STMTS IN REACHING SET NO. 2: 22 23 24 25 26 27 28
29 30 31 32 38 39 40
41 42 43 44 45 46 47

END OF REACHING SET INPUT ...

Figure 21.- Reaching-set report.

Dynamic Tools

The dynamic tools for the AED V&V tools are intended for use after the source
code has been successfully compiled.
development and
distinguishing errors caused by data or logic.

Dynamic tools are used during incremental
debugging during execution of actual code. Dynamic tools aid in

The dynamic tools are the TRACE, ASSERT, and PROBE tools and have two phases in
its execution. The first phase is when the AED source file is instrumented and upon
execution of the tool generates intermediate source code to link to dynamic rou-
tines. However, if the instrumented source code were encountered by the static
tools or the AED compiler, the instrumented source code would be interpreted as
ordinary COMMENT statements. This "intermediate instrumented" source code is passed
t o the AED compiler, assembler, and link loader to generate a complete load module.

After a successful load the load module with the asserted modules appears as a
file on the PDP-11/60 in the user's directory as 'I- .obj".
ters from the source file name appear as the name in the .obj" file. At this
point it is advisable to move the "-.obj" to another directory and rename it, to
keep it distinctly unique; e.g., 1ink.obj - - - > Alink.obj. Once the load module is
sent back to the PDP-11/60, the 'I- .obj" file is processed by the EXTRACT (extr)
program and an executable load module is created with the same name as the "-

.obj" file, except it has the file extension I'.exe".
described in the section "EXTRACT Program (extr)".

The first four charac-

The "extr" program is

The second phase begins when the 'I- .exel' file is downloaded to the flight
computers. When execution takes place in the flight computers, data is recorded and
stored in the spare memory areas of the flight computer each time a path is tra-
versed. Later, either by exhaustion of the table space or upon command, the data is

collected and uploaded to a data file on the PDP-11/60. When the data is on the
PDP-11/60 it is massaged and dynamic reports are generated which help to show where
retesting should be addressed in more detail. See the section "Symbolic Execution."

The DFCSVL and Dynamic Execution.- As just mentioned, the dynamic tool links to
some dynamic routines. These routines are unique and must be included in the
"link-edit deck" (usually referred by the appendage It- .map").
are covered in each dynamic tool description in the subsequent sections. The DFCSVL
environment uses the interactive pallet interface program (pif).
allows the user to perform a number of tasks necessary to control the execution of
the software in the pallet. A friendly, easy to use collection of commands enables
the user (1) to display or modify a memory cell through any of the four CAPS Test
Adapters (CTA), (2) to set breakpoints, download or upload data or programs, (3)
to search core to match a data pattern, (4) to halt the processors on the pallet, or
(5) to run the software in one of three different modes.
chronizes the generation of model data with the flight control software. A pseudo
airplane model residing on the PDP-11/60 is automatically spawned by pif.
tine ttTOP.OF.LOOPtt reads the data created by the psuedo airplane model and uses it
in the flight software. Therefore, certain routines must be present in the link-
edit deck at load time. Figure 22 and 23 shows "TOP.OF.LOOP" and a section of a

Specific routines

The pif program

The pif program also syn-

The rou-

17 COMMENT
18 .INSERT
19
20 COMMENT
21
22

50
51
52
53
54
55
56

. .
DFCSYSTEM;

7

***REMOVE COMMENT FOR DYNAMIC TESTING ** PROCEDURE TOP.OF.LOOP;
DEFINE PROCEDURE A.FORE.EXEC TOBE

PATH1 : ASNBIT(FALSE, 15,DO.BUFF.3);
COMMENT ** REMOVE COMMENT AND COMMENT OF NEXT LINE FOR
COMMENT **TOP.OF.LOOP(); ... REQUEST NEW MODEL

DO.W3 = D0.BUFF.3;
SENS . MON() ;
GOT0 PATH13;

PATH2 : ASNBIT(TRUE, 15,DO.BUFF.3) ;

DYNAMIC TESTING;
DATA @ 200 MS / /

Figure 22.- Executive-routine changes.

31

ORIGiN @3600@,0;
INCLUDE DFCS(AEXTERNAL);

END.EXT.ARRA EQU @3BFF@; INCLUDING ALL OF THE RAM

; DEFINE EXTERNALS FOR INSTRUMENTATION ARRAY
7

ORIGIN @3700@,0;
INCLUDE DFCS(1NSTARRAY);

9

?

; F / T ONLY
7

ORIGIN @3BOO@,O;
INCLUDE DFCS(FTCASE1;
INCLUDE DFCS(FT1NSERTE);

?

; INCLUDE ALL OF THE ROUTINES REQUIRED FOR PROBE, TRACE
; AND ASSERTION PROCESSING
t

?

INCLUDE DFCS(ALOOPT0P);
INCLUDE DFCS(G0UT); STANDARD OUTPUT
INCLUDE DFCS(ASSERT);
INCLUDE DFCS(0UTPUT); TRACE ASSERTION ROUTINE
INCLUDE DFCS(1NPUT); TRACE ASSERTION ROUTINE
ORIGIN @79D9@,2;

WAITS FOR MODEL DATA TO REFRESH

LOGICAL ASSERTION VIOLATION ROUTINE

OFFSET FOR DECISION PATH ... TABLE AT "A00
;INCLUDE DFCS(DDPATH); DECISION PATH ROUTINE
WAIT EQU @7000@; WORD TO WAIT FOR DATA
ASSERT.CAT EQU @7001@; INTERRUPT CATEGORY
ASSERT.SEL EQU @7002@; SELECTED NUMBER OF ASSERTIONS
ASSERT.PTR EQU @7003@; POINTER TO THE LOGICAL ASSERTION TABLE
ASSERT.BUFFER EQU @7004@;
INPUT .CAT EQU @7001@; INTERRPliT CATEGORY
INPUT. PTR EQU @7500@; POINTER TO THE TRACE TABLE
1NPUT.BUFFER EQU @7501@; TRACE TABLE
DDPATH.BUFFER EQU @7A00@; DDPATH TABLE

LOGICAL ASSERTION VIOLATION TABLE

9

Note: * In column 1 , there is a semicolon (;) making this line a comment.
DDPATH is not required f o r Assertion testing.

Figure 23.- Link-deck changes showing where special routines are included.

32

typical link deck with the special routines, respectively. In figure 23, the
INCLUDE statement for ALOOPTOP causes the object module ALOOPTOP to be loaded. The
command ALOOPTOP contains the entry point for "TOP.OF.LOOP."

The executive routine must have a PROCEDURE declaration and procedure call for
"TOP.OF.LOOP". A section of code from an executive routine is presented below
showing where the code should be changed.
source code must be compiled and linked.

After the changes have been made, the

Each of the dynamic tools are discussed separately, but they do have a similar
UNIX command format as seen below.

NAME
assert - process AED source for assertions.
probe
trace - process AED source for 1/0 assertions.

- process AED source for path instrumentation.

SYNOPSIS
assert
probe [-c class] [-mp#] [-mtb] [-z] -1 mapfile.map AED - file ...
trace

..(files must end in [.sed], [.fof] or [.isd])

DESCRIPTION
The dynamic command (assert, probe or trace) invokes the V&V dynamic
tool on the Univac 1100. The command accepts publicly readable files
whose file names end with .aed for AED source modules; .fof for
file-of-files or .isd for files residing on the Univac computer site.
Files ending in .aed or .fof may be sent at the same time. Files
ending in .isd must all be sent together and must reside on the
Univac 1100 computer. The module is instrumented, compiled,
assembled, and link edited, and the output is routed as specified by
the following flag arguments.

Output listings from the Univac are routed to the user's directory on
the PDP-11/60 with a file name consisting of the first four
characters from the first file name with a ('.obj" extension attached.

The following arguments are interpreted by the dynamic tool:

-c Univac 1100 job priority. Priorities range from A through Z, the
highest to lowest priority, respectively. The default is class
A (standard).

33

-mp# This option allows the user t o specify the maximum number of
pages for the Univac 1100 printout.
used by this command is computed based on the number of files
(AED modules) which is approximately 16 pages per file; e.g.,
-mpW

The default number of pages

-mt% This option allows the user to specify the maximum time for
execution on the Univac 1100. A number preceded by an "s"
(e.g., -mts4O) is assumed t o be in seconds. The default time
limit used by this command is computed based on the number of
files (AED modules), approximately 60 sec/file.

-z The z option allows for debugging or displaying the run stream
to determine if the run was generated correctly. See static
tool format for detailed description of the -z option.

-1 This flag is required for dynamic processing. It is to link the
program from a file, It- .map", which specifies modules,
addresses, and so on, for the link editor. The 'I .map" MUST
BE PRESENT with the -1 option.

Each tool will be discussed in detail.

NOTE
Source files manipulated by this command must be publicly readable in
order for them to be copied t o the RJE queue or accessable on the
Univac.

DIAGNOSTICS
The job may successfully be sent to the Univac 1100 but fail to run
for many reasons.
cryptic messages why the run failed. If it is not obvious, seek a
user consultant for diagnostic help.

The user's output listing will contain one or more

Instrumenting the Source Code.- A module is instrumented by placing assertion
statements in areas of the source code where variables or logic paths are to be
tested. The ASSERT and TRACE dynamic tools interpret the instrumented source,
generate dynamic tool numbers, and insert linkage to dynamic routines in the source
code. Because these dynamic tool numbers exist and the source has been instru-
mented, the modules must be compiled, assembled, and linked to keep the dynamic tool
numbers consistent. The dynamic tool numbers are referenced by the report generator
to produce dynamic tool reports after execution.

An exception to the instrumentation process is the PROBE dynamic tool. The
PROBE dynamic tool performs a path analysis on the AED source code first, then
generates dynamic tool numbers and inserts the linkage dynamic routines in the

34

source code. The subsequent procedures for the PROBE tool after the source code has
been instrumented is the same as for the ASSERT and TRACE tool.

Assertion Tool.-

UNIX COMMAND EXAMPLE:

assert -1 Alink.map alatcom.aed

This command calls on the ASSERTION tool to generate and
insert linkage to dynamic routines for the AED module
alatcom. Then compile, assemble and link the module based
on the link-edit deck, "Alink.map".

UNIVAC COMMAND EXAMPLE:

@XQT AMES*ASSERT.ASSERT
@ADD,E AVFS$$.filename

The user instruments the AED source code by inserting assertion statements in areas
of the source code to track a variable or variables. A maximum of 30 assertion
statements is allowed in the source code. Assertions can be placed:

After subprogram entry
Before subprogram exit
After subprogram invocations
A t decision points
Within long computations
Where data enters
Where boundary checks should be made

There are several formats available for assertion statements in the source
code. They are l i s t ed (n o t ranked) a s follows:

COMMENT ASSERT* boolean expression;

COMMENT ASSERT* ALL control IN (initial value,
final value) boolean expression;

COMMENT ASSERT* SOME control IN (initial value,
final value) boolean expression;

COMMENT INITIAL* -- synonym of ASSERT.
COMMENT FINAL* -- synonym of ASSERT.

35

Examples

COMMENT ASSERT* HEIGHT >500;

COMMENT ASSERT* ALL I I N (1 , N) X(I) > Y (I) ;

COMMENT ASSERT* SOME I IN(1,M) X (1) == 3000.0;

After t h e AED s o u r c e module h a s been a s s e r t e d , t h e s o u r c e module is ana lyzed by the
ASSERT t o o l and an i n t e r m e d i a t e f i l e c o n t a i n i n g dynamic t o o l numbers and l i n k s t o
dynamic a s s e r t i o n r o u t i n e s is g e n e r a t e d . T h i s i n t e r m e d i a t e f i l e is passed t o t h e
AED p r o c e s s o r s f o r f u r t h e r p r o c e s s i n g .
f i l e named "TABFIL" on t h e Univac. The TABFIL f i l e is l i s t e d and r e t u r n e d t o t h e
PDP-11/60 a long w i t h t he r e s u l t s from t h e AED p r o c e s s o r s .
subsequen t ly used by t h e r e p o r t g e n e r a t o r .

The dynamic t o o l numbers are retained i n a

T h i s p r i n t o u t p u t is

A s p e c i a l n o t e f o r t h e program u s i n g a s s e r t i o n s . The l i n k - e d i t deck MUST OMIT
F igure 24 d e p i c t s t h e the "INCLUDE program-file(DDPATH);" f o r the l o a d i n g p r o c e s s .

f low o f t h e AED s o u r c e from i n p u t t o t h e l o a d module ' s comple t ion .

F igu re 25 shows t h e r e s u l t s o f t h e ASSERTION r e p o r t . In f i g u r e 25, Modu
a dynamic too l number a s s i g n e d by the ASSERT t o o l ; t h e l i n e number references
s t a t e m e n t number w i t h i n t h e module where t h e a s s e r t i o n v i o l a t i o n h a s occur red
t he n t h t i c k time. Each t i c k is 50 msec.

e 1 is
t h e
and a t

36

r

BEGIN
DEFINE PROCEDURE -----

BEGIN
COMMENT ASSERT*----

c:a INSERTS

ASSERTIONS <

TABFIL

ASSERT

' COMMENT ASSERT*----
END

END FIN1

SOURCE

COMPILER
CROSS OUTPUT

COMPl LE R

I 9
I

AED
ASSEM B L E R

I
f-l AED LINK

ASSE RT ION
.OBJ FILE
TABFIL

Figure 24.- Assertion-tool flow.

37

CTA 1: Recording assertion violations

CTA 1: 30 assertion violations

Module
Module
Module
Module
Module
Module

Module
Module
Module
Module
Module
Module

i l l ,
I ,
81,
111,
11 1 ,
1 ,

111,
6 1 ,
111,
111,
111,
c1 ,

line 40,
line 40,
line 40,
line 39,
line 39,
line 40,

line 40,
line 39,
line 39,
line 39,
line 39,
line 40,

time 2
time 5
time 8
time 10
time 11
time 1 1

time 26
time 27
time 28
time 29
time 30
time 30

Figure 25.- Assertion report.

Trace Tool-

UNIX COMMAND EXAMPLE:

trace -1 Alink.map alatcom.aed

This command calls on the TRACE tool to generate and insert
linkage to dynamic routines for the AED module alatcom. Then
compile, assemble, and link the module based on the link edit
deck , A1 ink . map. 'I

UNIVAC COMMAND EXAMPLE:

@XQT AMES"TRACE.TRACE
@ADD,E AVFS$$.filename

The user instruments the AED source code by inserting assertion statements in areas
of the source code where it is desirable to track the variable or variables in
question. Although there is no limit to the number of assertions placed in the
source code there is a dynamic table-size limit of 40 entries.
lar in performance; that is, after the fortieth entry, the forty-first entry occu-
pies position number one of the table, the forty-second entry occupies number two,
the eighty-first entry occupies position number one of the table, so when execution
is halted, the last 40 entries are in the table.

The table is circu-

The TRACE tool automatically processes the TRACE assertion statements "COMMENT
INPUT* ---- It and "COMMENT OUTPUT* ---- I t , but the "COMMENT ASSERT* ---- statements
cause the TRACE tool problems. Do not include the "COMMENT ASSERT* ---- It statements
in the source code.

The user has two formats available to put a TRACE assertion statement in the
source code. They are listed (not ranked) as follows:

COMMENT INPUT* expression;

COMMENT OUTPUT* expression;

Examples

COMMENT INPUT* BOOLEAN ALIGN;

COMMENT OUTPUT* LONG TOTAL.TIME;

After the AED source module has been asserted, the source module is analyzed by
the TRACE tool, and an intermediate file containing links to dynamic trace routines
is generated. This intermediate file is passed to the AED processors for further
processing.
IIINCLUDE program-file(DDPATH);" in the link-edit deck.
of the AED source from input to load-module completion.
of the TRACE report in ascending time.

The link edit deck for the module having assertions MUST OMIT the
Figure 26 depicts the flow
Figure 27 shows the results

39

AED TEXT

BEGIN
DEFINE PROCEDURE -----

BEG IN
COMMENT INPUT* ----

COMMENT OUTPUT* ----
COMMENT INPUT* ----

TRACE
ASSE R T I ONS

END FIN1

INSERTS a
TABFIL

TRACE

i
I

AED
CROSS

COMP I LE R

AED LINK
LOADER

TRACE
.OBJ FILE
TABFIL

Figure 26.- Trace-tool flow.

40

TRACE REPORT
ENTRIES 40

Procedure Name Variable Name TY Pe Usage Time Value (h e x)

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

LIMIT
LIMIT
LIMIT
MPYE
MPY E
ROLL.FLTDIR
ROLL.FLTDIR
ROLL.FLTDIR
ROLL.FLTDIR
ROLL.FLTDIR

30. ROLL.FLTDIR
31. ROLL.FLTDIR
32. ROLL.FLTDIR
33. ROLL.FLTDIR
34. LIMIT
35. LIMIT
36. LIMIT
37. MPYE
38. MPYE
39. ROLL.FLTDIR
40. ROLL.FLTDIR

Y
Y
Y
X
X

DPC
TOTAL.TIME

FDSELL
DIFF

FDSELL

FDSELL
DIFF

FDSELL
DIFF

Y
Y
Y
X
X

DPC
TOTAL.TIME

REAL
REAL
REAL
REAL
REAL
REAL
LONG

BOOLEAN
REAL

BOOLEAN

BOOLEAN
REAL

BOOLEAN
REAL
REAL
REAL
REAL
REAL
REAL
REAL
LONG

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

OUTPUT
INPUT

OUTPUT

OUTPUT
INPUT

OUTPUT
OUTPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

89
89
89
89
89
89
89
90
90
90

92
92
92
92
92
92
92
92
92
92
92

00002000
00000555
000003BC
0000FFF3
0000 14D3
000099 9 A
00000059
0000000 1
OOOOOAB5
0000000 1

0000000 1
OOOOOA48
0000000 1
00000A48
00002000
00000555
000003BC
0000FFF6
0000 1485
0000999A
0000005C

End of data.

Report Generated: Mon Jul 22 10:10:54 1985
By User: Jim

Figure 27.- Trace report.

41

Probe Tool-

UNIX COMMAND EXAMPLE:

probe -1 Alink.map rollfltdir.aed

This command calls on the PROBE tool to generate and insert
linkage to dynamic routines for the AED module rollfltdir. Then
compile, assemble, and link the module based on the link-edit
deck, "Alink.map."

UNIVAC COMMAND EXAMPLE:

@XQT AMES*PROBE.PROBE
@ADD,E AVFS$$.filename

No instrumentation is necessary of the AED source module prior to the execution of
the PROBE tool. Once the PROBE tool is executed, a data-path analysis is performed
on the AED source code and for each data path a link is generated to the dynamic
PROBE routine. This intermediate source code is passed to the AED processors for
compiling, assembling, and linking. The link-edit deck for the dynamic PROBE execu-
tion MUST include the "INCLUDE program-file(DDPATH) ;IT. Figure 28 depicts the flow
of the AED source from input to load-module completion. Figure 29 shows the PROBE
report after dynamic-flight software execution with PROBE routines collecting data
during execution.

42

AED TEXT

BEGIN
0
0

BEGIN

END

e
0

0
e

END
I

PROBE

SOURCE

COMPl LER OUTPUT

COMPl LE R
OUTPUT CROSS

COMPILER

AED LINK (, LOADER ,)

PROBE.OBJ

TABFIL

Figure 28.- Probe-tool flow.

43

PROBE REPORT

Procedure name: MPYE
Number of p a t h s : 1

1 2 3 4 5 6 7 8 9 10

I

I
1 - 10 I 363

Procedure name: LIMIT
Number of p a t h s : 1

1 2 3 4 5 6 7 8 9 10

I

I
1 - 10 I 242

Procedure name: ROLL.FLTDIR
Number of p a t h s : 19

1 2 3 4 5 6 7 8 9 10

0 121 0 121 0 121 121
I

I
11 - 20 I

I

1 - 10 I 120 121 121

0 121 121 121 121 0 121 0 121

End of d a t a .

Report Gene ra t ed : Mon J u l 22 10:05:04 1985
By User: j i m

F i g u r e 29.- Probe r e p o r t .

44

Symbolic Execution

UNIX COMMAND EXAMPLE:

symbolic ctrl.dat hdgsel.aed

I -

, -

This command symbolically executes the module hdgsel.aed within
the range specified in the control file "ctrl.dat," and generate
a symbolic execution or verification condition generation
report .

UNIVAC COMMAND EXAMPLE:

@XQT AMES*SYMEXEC.SYMEXEC
@ADD,E AVFS$$.filename

Symbolic execution, verification condition generation (VCG), or formal verification
(as it is often called) of variables or expressions can be used to verify a module's
output is the same as the formula it has been specified to compute.
execution of assertions is termed "verification conditions."
verification conditions for a module are true, it is said the module has been for-
mally verified with its assertions.

The symbolic
By showing that the

Two steps are required to perform symbolic-execution or verification-condition
The first step is a preliminary step to obtain the necessary data; the generation.

second step is the actual generation. The program verifier uses line numbers of AED
source modules to perform symbolic execution.

The UNIX command format for symbolic execution is as shown in the following
list:

NAME

symbolic - AED Symbolic Execution
SYNOPSIS

symbolic [-c class] [-mp#] [-mt#] [-z] file.dat AED-file ...
..(files must end in [.aed], [.fof] or [.isd])

DESCRIPTION

The symbolic command invokes the AED Symbolic Execution tool on the
UNIVAC 1100. Variables are initialized to their default values in
the module specified for the range specified in the control file
ending with the file extension .dat. It accepts publicly readable
files whose file names end with .aed for AED source modules, . fo f for
file of files, or .isd for files

45

residing on the Univac computer site. Files ending in .aed or .fof
may be sent at the same time.
together and must reside on the Univac 1100 computer.
analyzed and outputs are routed as specified by the following flag
arguments.

Files ending in .isd must all be sent
The module is

Output listings from the Univac are routed to the user's directory on
the PDP-11/60 with a file name consisting of the first four
characters from the first file name with a ".rpt" extension attached.

The following arguments are interpreted by Symbolic:

-c Univac 1100 job priority. Priorities range from A through Z, the
highest to lowest priority, respectively. The default is class
A (standard).

-mp# This option allows the user to specify the maximum number of
pages for the Univac 1100 printout.
used by this command is computed based on the number of files
(AED modules) which is approximately 16 pages per file; e.g.,
-mp50.

The default number of pages

-mt# This option allows the user to specify the maximum time for
execution on the Univac 1100. A number preceded by an "S"
(e.g., -mts4O) is assumed to be in seconds. The default time
limit used by this command is computed based on the number of
files (AED modules) approximately 60 sec/file.

-z The z option allows for debugging or displaying the run stream
to determine if the run was generated correctly. See static
tool format for detail description of the -z option.

NOTE
Source files manipulated by this command must be publicly readable in
order for them to be copied to the RJE queue o r accessable on the
Univac.

DIAGNOSTICS
The job may successfully be sent to the Univac 1100, but may fail to
run for many reasons. The user's output listing will contain one or
more cryptic messages why the run failed.
obvious, seek a user consultant for diagnostic help.

If the problem is not

The symbolic execution control file, "filename.dat," is basically a FORTRAN "FOR"
statement loop. The first statement is the "FOR" statement in the form

46

"FOR LINES = n .. m DO", where "n" is the beginning line number and 'hrl is the
ending line number. The periods, ".." MUST be present in the statement. The second
statement in the control file is the "variable" to be evaluated. The last statement
of the "FOR" loop is the "END FOR" statement.
expression, such as LAT.LIM.CMD between the lines 10 through 20, the following
format must be specified in the symbolic execution control file:

To symbolically execute an

FOR LINES = 10 .. 20 DO
LAT.LIM.CMD
END FOR

The symbolic execution tool reads the control file, lists the original expression,
then it generates the executed expression for the variable specified.
shows the results of the module "hdgsel" symbolically executed.

Figure 30

ORIGINAL EXPRESSION

LAT.LIM.CMD
1 BEGIN

6 DEFINE PROCEDURE HDG.SEL TOBE
7
8 COMMENT ITERATION RATE = 5 / SEC ;
9 BEGIN
10 IGNORE.OVRF0 ... IGNORE ARITHMATIC OVERFLOW ;
12 DETERMINE HEADING ERROR SIGNAL ;
13 PROTECT.OVRF() ... REINSTATE OVERFLOW PROTECTION ;
14 LAT.LIM.CMD = LIMIT(KTAS*HDG.ERROR, .027778)/.055556 . . . DETERMIME
15 LAT.LIM.CMD AS A FUNCTION OF TAS AND
16
17 CHANGE OUTPUT SCALE TO 60 DEG / FS ;
18 .INSERT COMMONINSERT;
19 .INSERT HDGSELINSERT;
20 END ;

1 1 HDG.ERROR = SEL.HDG-.736667*VOTER(YAW.RATE.PTR)-HEADING ...

HEADING ERROR, LIMIT FOR RESCALING,

FINAL EXPRESSION

(LIMIT (KTAS * (SEL.HDG - .736667 * VOTER (YAW.RATE.PTR
) - HEADING) , .O27778) / .055556)

Figure 30.- Symbolic-execution report.

47

1 Figure 31 shows the control path used in executing the Symbolic Execution tool.

%symbolic file.dat file.aed

SYMBOL IC
EXECUTION
INTERFACE

Figure 31.- Symbolic-execution flow.

EXTRACT PROGRAM (extr)

UNIX COMMAND EXAMPLE:

extr file.obj

Execute the extract program to extract CAPS 6 executable code
from I' f i le. ob j '' .

The extr program extracts CAPS executable code from listings that have been returned
from the Univac 1100.
Univac object code sent over the RJE link be converted t o ASCII code such that the
file is suitable only fo r printing.
contains the actual executable object code. The program flow is shown in Figure 32.

The nontransparent transmission of the RJE link requires all

The "extr" command creates a new file that

48

%extr file.obj

file.obj Q
l -

file.exe Q
F i g u r e 32.- Extr-program flow.

The U N I X command format for " e x t r t l is as shown below.

NAME

extr - extract e x e c u t a b l e program from l i n k e d i t l i s t i n g

SYNOPSIS

e x t r f i l e .ob j

DESCRIPTION

The "extr" command extracts CAPS 6 e x e c u t a b l e object code from list-
i n g s t h a t have been r e t u r n e d (v i a R J E) from t h e U N I V A C 1100.
Because o f the n o n t r a n s p a r e n t RJE t r a n s m i s s i o n , a l l object code
r e t u r n e d o v e r RJE are r e t u r n e d to a f i l e s u i t a b l e o n l y for p r i n t -
i n g . T h i s f i l e c o n t a i n s t h e ASCII r e p r e s e n t a t i o n of the e x e c u t a b l e
object code. The " e x t r " command creates a new f i l e t h a t c o n t a i n s t h e
a c t u a l e x e c u t a b l e object code.
f i l e w i t h a f i l ename t h a t ends w i t h a ".obj" e x t e n s i o n (t h i s is the
l i s t i n g r e t u r n e d from t h e U N I V A C 1100), and o u t p u t s a f i l e n a m e b u t
w i t h the e x t e n s i o n I1.exe". I t is s t r o n g l y sugges t ed t h a t a l l f i l e s
be i n s p e c t e d w i t h t h e edi tor before proceeding w i t h t h e " e x t r "
command. An o b j e c t l i s t i n g is o f t e n created by the UNIVAC even i f
t h e la tes t compile a b o r t e d .

The ttextrll a c c e p t s as i n p u t an 11/60

49

DIAGNOSTICS

"Filename not created with CARTRIDGE TAPE . . . ' I

The .obj" file provided was not created using the ''-1"
option to "axc [avfs]" or the file was somehow truncated
(possibly because of a bad RJE transmission).
in the editor or print the contents of the file for examination.

Examine the file

"Truncated object file"
This message occurs when the object file that has been input is
somehow incomplete. The file could have been interrputed while
being transmitted, the UNIVAC run may have terminated abnormally
(aborted because of maximum pages, etc.). Examine the file in
the editor or print the contents of the file for examination.

EXAMPLES

extr Alink.obj
The 11/60 file "Alink.obj" is read and the extr program
determines if it was created with the cartridge tape trans-
mission program. I f so, a f i l e named "Alink.exe" is created
which contains the executable program to be downloaded to the
pallet .

PALLET INTERFACE PROGRAM (pif)

UNIX COMMAND EXAMPLE:

pif
Execute the pallet interface program t o perform a variety of
tasks on the pallet.

The pif is an interactive UNIX program which accepts commands to perform a
variety of tasks necessary to control the execution of the software in the pallet.
A friendly, easy to use collection of commands enables the user to display o r modify
a memory cell in the flight computers through any of the four CTAs, set breakpoints,
download or upload data or programs, search core to match a data pattern, halt the
processors on the pallet, or run the software in one of three different modes.
pif also synchronizes the generation of model data with the flight control soft-
ware.
cally spawned by pif.

The

The airplane model resides in a file named /avfs/bin/model and is automati-

50

The UNIX command format for "pif" is as shown below.

NAME

pif - pallet interface program
SYNOPSIS

pif [-a assert - file] [-t trace - file]

DESCRIPTION

The pif command invokes the interactive pallet interface program.
This program allows a user to perform a number of tasks necessary to
control the execution of the software in the pallet. A friendly,
easy to use collection of commands enables the user to display o r
modify a memory cell through any of the four CTAs, set breakpoints,
download o r upload data or programs, search core to match a data
pattern, halt the processors on the pallet, or run the software in
one of three different modes. The pif synchronizes the generation
of model data with the flight-control software. The airplane model
resides in a file named /avfs/bin/model and is automatically spawned
by pif.

The following arguments are interpreted by pif:

-a assert - file

Logical assertion violations accumulated during dynamic testing
is accumulated in the file "assert file". This file is an ASCII
file containing the dynamic data produced by the software
tools. The default is to print the data on the DEC-writer. See
the description of the AED V&V tool assert.

-t trace-file

Dynamic data generated by the AED V&V trace tool is accumulated
in file "trace - file".
report using the Report Generator, "rpt". Omission of this
option causes the trace data to remain on the pallet where it
was accumulated. See trace and Report Generator descriptions.

This data may later be formatted into a

Once pif is called, it prompts the user for the input of a command.
The following commands are recognized by pif:

51

"help [command]"

The help command provides the user with the proper syntax and
usage of the legal pif commands.
arguments provides a list of the legal commands and their asso-
ciated syntax. The "command" argument to help is assumed to be
the name of a command that the user requires additional infor-
mation. The command "help help" provides information similar to
that in this paragraph.

The "help" command without any

"ctas [number-of-ctas]"

The ctas command allows the user to change the number of CTAs in
use by pif.
number of CTAs currently in use. This may be changed by using
the optional argument "number - - of ctas".
enables the user to access all four CTAs, "ctas 3" allows CTAs
1, 2, and 3 to be accessed, etc. The default allows the user to
access CTAs 1 and 2.

The command "etas" with no arguments echos the

The command "ctas 4"

"base [octal I decimal 1 hex]"

The base command is used t o change or display the working number
system used by pif.
the current number system (octal, decimal, or hexadecimal). The
optional argument t o base is used if the user wishes to change
the number system.
to decimal (unsigned decimal), etc. The default base is
hexadecimal.

The command "base" with no arguments echos

The command "base decimal" changes the base

"quit

This command simply exits pif and returns the user to UNIX.
model is terminated and intermediate files created by the model
are removed. The use of this command causes a normal exit.

The

The halt command is used to halt the execution of the flight-
control software in the CAPS. It only halts those processors
currently in use by pif.

"search [caps - address value] 'I

Search is a routine that sequentially reads through through CAPS
core and compares each memory cell to the bit pattern speci-
fied. As with all of the other pif commands the two arguments
(caps-address and value) are taken to be values specified in the

5 2

current working number system (see the "base" command). Hence,
if the command input is "search 1.100 0667", and the working
number system is hexadecimal, pif begins searching at address
hexadecimal 100 on CTA /I1 and stops when it finds a cell that
contains hexadecimal 0667.
leading zeros, all bit patterns are right justified in the
word. If no match is found, the user is notified. The command
"search" with no arguments begins searching at "the last address
that contained a match" + 1 for the same data pattern. This
command enables a user to find all occurrences of the data
pattern without having to retype the entire command several
times. If the working number system is octal and the command
"search 1.100 888" is given, unusual results will occur.

It is not really necessary to type

"break [caps - address] [data]"

The break command is used to set the breakpoint bit in the
control register of the specified CTA. Only one breakpoint may
be set for each CTA.
may be set. The first is an "address breakpoint."
causes a bus halt when the specified address occurs of the
transfer bus. When a breakpoint is encountered on any CTA, all
CTAs are halted by pif and the user is notified. This type of
breakpoint may be set by specifying the "caps address" argument
and not the "data" argument. For example, "break 2.3F66" sets
CTA #2 to bus halt when the address 3F66 occurs on its transfer
bus. TPs second type of breakpoint that may be set is an
"address and data breakpoint." It is set by specifying both
arguments to the break command. The command "break 3.548A
1010" causes a bus halt on CTA #3 when the address 548A is on
its transfer bus and that address contains the value 1010. The
"break" command with no arguments cancels all breakpoints on all
CTAs.

There are two types of breakpoints that
This type

%on i tor

The monitor command allows the user to display and/or modify the
contents of any positive address in the CAPS memory. Note that
a positive address is one which is not on the 1/0 page. Monitor
can access addresses up to and including "7FFF" and display them
one at a time, or dump 50 values with a single key-stroke.
operation of this routine includes a subset of the directives
allowed by the Monitor program that runs on the PDP 11/04 on the
pallet. Once the monitor command is issued, the following
subcommands are legal:

The

ll/lt Display current address, see notes regarding buffering
below.

53

"\" Display c u r r e n t address - 1 , and back up p o i n t e r .

Disp lay c u r r e n t address + 1 , and move p o i n t e r forward.

It (s p a c e) Dump t h e b u f f e r and increment p o i n t e r (c o n t a i n s 50
memory l o c a t i o n s 1 .

"q" Q u i t (e x i t) t h e moni tor p r o c e s s o r and r e t u r n t o p i f .

A memory c e l l is modi f ied by t y p i n g t h e a d d r e s s
(CTA.address. . . lll.lOOO" for example) , fo l lowed by a ''/"
d i r e c t i v e , t h e n t y p i n g a new v a l u e . I t is i m p o r t a n t t o n o t e
t h a t t h i s moni tor r o u t i n e d i f f e r s from t h e 11/04 r o u t i n e i n many
ways. Most i m p o r t a n t is t h e fact t h a t a l l 1/0 i n t h e 11/60
v e r s i o n is b u f f e r e d . Repeatedly t y p i n g 'I/'' w i l l n o t n e c e s s a r i l y
d i s p l a y an updated memory l o c a t i o n . The b u f f e r may be w r i t t e n
t o CAPS memory by t y p i n g a c a r r i a g e r e t u r n . The same a p p l i e s t o
m o d i f i c a t i o n of a p a r t i c u l a r l o c a t i o n . Again, the l o c a t i o n is
updated when a new v a l u e is e n t e r e d followed by a c a r r i a g e
r e t u r n .

"upld [-VI cta.address word-count 11/60 - f i le"

The "upld" command u s e s t h e d a l l b l i n k t o r e q u e s t data from the
t a r g e t computer to be made a v a i l a b l e for test r e p o r t i n g i n f i l e
'I 1 1 /60 f i l e . 'I The "upld" r e t r i e v e s t h e "word-count" words from
t h e t a r g e t computer s t a r t i n g from "address."
address t h a t may be a c c e s s e d by "upld" b e g i n s a t 0 and r u n s up
to 7FFF i n c l u s i v e .

The r a n g e of

The fo l lowing arguments are i n t e r p r e t e d by upld :

-v Verbose mode, n o t i f y t h e u s e r when upload is comple te .
The "upld" wi thou t t h i s o p t i o n works s i l e n t l y .

"dnld [-VI c t a [. a d d r e s s] 11-60/f i leff

The "dnld" command loads a n e x e c u t a b l e program o r data t o t h e
CAPS through any of the f o u r CTAs.
end w i t h .exe (CAPS e x e c u t a b l e programs) . The program/data is
passed t o t h e t a r g e t computer v i a t h e d a l l b l i n k .
l i n k s may be downloaded. I f "address" is s u p p l i e d i n t h e com-
mand l i n e , it is assumed t h a t t h e f i l e is data o n l y c o n t a i n i n g
no address or l o a d i n g i n f o r m a t i o n . I f "address" is n o t sup-
p l i e d , "dnld" assumes t h a t the f i l e c o n t a i n s ob jec t code t h a t
h a s been r e c e i v e d from t h e AED cross compi le r and p rocessed w i t h
t h e e x t r command.
i n f o r m a t i o n needed t o download t h e program. The r a n g e of

I t a c c e p t s f i l e s whose names

Two t y p e s of

T h i s object code c o n t a i n s a l l of t h e address

54

address that may be accessed by "dnld" is from 0 to 7FFF
inclusive.

The following arguments are interpreted by dnld:

-v Verbose mode, notify the user when download is comp
The "dnld" without this option works silently.

ete.

'Ish [UNIX - command] [args] 1"

This command allows the user to execute UNIX commands without
leaving the pif processor. The argument(s) is taken to be the
UNIX command that the user wishes to execute. The ''sh" with no
arguments spawns a new shell. Be careful...this is not the same
as the "quit" command! Because of the method of airplane model
data synchronization, "cd" and "chdir" are disabled.

"assert [number - - of asserts]"

The "assert" command allows the user to change the maximum
number of logical assertion violations that are accumulated in
the CAPS before the user is notified. The maximum number of
asserts that may be set is 30 (this is the default). "Assert"
sets the same number of maximum assertions for both the A and B
channel of FCC i l l .
completely different task.
see if there are any assertions already detected, but waiting to
be sent. For example, if the maximum number of assertions is
set at 20, and only 10 are collected during a given test
session, the user would have to issue "assert" to collect the
assertion data.

The "assert" with no arguments performs a
It is used in this way to check to

"mode [continuous I cycle I s t e p] "

The mode command is used to alter the way in which pif inter-
prets the "go" command.
Continuous mode implies that when the "go1' command is issued,
the 11/60 airplane model continuously furnishes model data to
the MDICU and lets the software in the pallet run indefi-
nitely. Cycle mode is used when the user wishes to run only one
iteration through the flight software.
from the airplane model is transmitted to the MDICU. Use of
cycle mode assumes that the user has previously set a breakpoint
at the bottom (o r top) of the flight-software loop. The third
mode is step mode. With pif set in step mode, each go command
that is issued causes a bus step (the same as pushing the bus
step key on the CTA).
the data, and the data and address registers after each bus

Three different modes are possible.

Only one block of data

In step mode, pif echoes the contents of

55

step. Breakpoints are disabled in step mode. The "mode"
command without arguments echoes the current mode.

go [reset 3

This command places the CTAs in the run mode as selected by the
"mode" command, The optional argument "reset" causes a system
reset (the same as pushing the reset key on the CTA). Without
the argument, execution begins at the address that is currently
on the address bus.

DIAGNOSTICS

All diagnostics are self-explanatory.

REPORT GENERATOR

UNIX COMMAND EXAMPLE:

rpt [-t] file.dyn file.obj

Produce a dynamic report from the data in file.dyn in conjunc-
tion with the dynamic file pointers stored in the listing file,
file.obj.

The report generator produces a formatted dynamic report based on the inputs it
receives from the UNIX command line. Probe o r Trace data collected during execution
is stored in the flight computer then uploaded to the PDP-11/60 and stored in a file
ending with a name 'l.dyn", e.g. "- .dyn". An associated file, 'I- .obj", for the
probe- or trace-load module is used as input to the report generator to produce the
formatted dynamic report. In the section Dynamic V&V Tools, dynamic tool numbers
were generated and used in the linkages to dynamic routines. They are also used by
the report generator. The program flow is shown in figure 33.

The UNIX command format for the report generator is as shown below.

NAME

rpt - Produce formatted report from dynamic data

SYNOPSIS

rpt [-t] file.dyn file.obj

56

%rpt ---- .dyn ---- .obj

REPORT r-l GENERATOR

I -t option

TRACE
REPORT

DEFAULT

PROBE
REPORT

F i g u r e 33.- Repor t -genera tor program flow.

DESCRIPTION

The "rpt l ' command formats a r e p o r t from data collected by a dynamic
t e s t of f l i g h t software and t h e l i s t i n g created by t h e V&V t o o l t h a t
p repa red t h a t f l i g h t software for t e s t i n g . Two t y p e s o f r e p o r t s may
be created.

The f i r s t is a ''path" or "PROBE" report . For this report, the data
i n f i l e " f i l e . d y n " is assumed t o have been collected d u r i n g dynamic
e x e c u t i o n of t h e software p repa red by the probe t o o l . The data i n
t h e f i l e " f i l e .dyn" c o n t a i n s p a t h numbers and an associate time for
each p a t h number. The time reco rded r e p r e s e n t s the number of times
t h e co r re spond ing p a t h had been execu ted as a r e s u l t of t h e dynamic
t e s t .

The second t y p e o f r e p o r t is a TRACE r e p o r t . The data i n f i l e
" f i l e . d y n " is assumed t o have been c o l l e c t e d d u r i n g dynamic execu-
t i o n
The o u t p u t of " r p t " h a s i n its heading t h e number e n t r i e s i n t h e
t a b l e and t h e CTA number on which t h e v a r i a b l e s were found. The
r e p o r t t hen lists t h e e n t r y number, t h e module/procedure name con-
t a i n i n g the v a r i a b l e , t h e v a r i a b l e name, t h e v a r i a b l e t y p e , t h e
usage , t h e time (from t h e f l i g h t software) t h e v a r i a b l e was traced,

of t h e f l i g h t software v a r i a b l e p repa red by the trace too l .

57

and the value of the variable when the trace was encountered, see
figure 27.
to rpt in file ending 'I- .dyn"; e.g., "file.dyn".

The data file returned by dynamic execution must be input

Both reports require a file, "file.obj" in addition to the file
"file.dyn".
contains the load module listing for either the TRACE or PROBE
flight-software load. Within "file.obj" is a table containing
dynamic tool numbers which are associated with the numbers in the
data file "file. dyn . "

"File.obj" is a listing file returned by the Univac and

Note that "file.dyn" and "file.obj" are unique files, are generally
paired together and usually have unique names.

The following arguments are interpreted by rpt:

-t Format a TRACE report.
a TRACE report.
report.

Use of this option causes rpt to format
The default is to format a path o r PROBE

Be sure to input the correct data file!

EXAMPLES

rpt -t test.dyn afor.obj

Format a TRACE report from dynamic data test.dyn and listing
afar-obj.

rpt paths.dyn alat.obj

Format a path (PROBE) report from dynamic data paths.dyn and
listing alat.obj.

CONSTRAINTS

The AED V&V tools impose certain restrictions on the size of the interface
file, the command language, and the source text to be analyzed. Most of the limita-
tions based on size are generous (e.g., the maximum number of nested IF statements
is one hundred). The tools are capable of handling quite large source text files.
However, an unusually large program may have to be processed by several successive
executions, each operating on a separate file of modules.

58

Universal Constraints

The universal constraints are as follows:

At most 250 modules may use the same COMMON block

Maximum of 80 characters per source-card image read

The maximum number of DD-paths is 50.

The maximum number of statements on a single DD-path is 100.

The sizes of the two random files on logical unit 8 (LIBNEW) and logical
unit 1 1 (LIBOLD) are established using an OPEN statement in tool subrou-
tine INITIN. The current sizes are 500 records (of 300 words each).

Subroutine NITTOK of the tools uses an OPEN statement to establish two
direct access scratch files, TOKFIL and LNKFIL, on logical units 21
and 22, respectively. Improper arguments can lead to excessive execution
time for the tools.

Maximum of 250 tokens per statement.

Syntax Constraints

The following implementation constraints must be observed:

Each module placed on the same interface library must have a unique name.

If any errors are detected in the source, one or more statements may be
flagged as not parsed.

Tool Deficiencies

The AED V&V tools were evaluated and tested under contract by Boeing Commercial
Airplane Company.
this User's Guide.
complete for the current version of the AED V&V tools:

The final report is to be published and was not available for
The following list (not ranked) of tool deficiencies is not

If a tool encounters "SYNTAX ERROR DUMP" during its lexical analysis of a
module, a tool report is still generated but not accurate.

The PROBE tool does not check the path for branches if the branches occur
to the right of an equal sign.

59

The PROBE tool does not generate the proper calling sequence for the
dynamic routine DDPATH when processing multi-procedure --- multi-modules.

The COMMENT ASSERT* statement CANNOT be present in the source code when
executing the TRACE tool.

COMMENT INPUT* and COMMENT OUTPUT* statements are permitted in the source
code when executing the ASSERT tool.

UNITS tool cannot properly process units in expressions within an argument
list.

UNITS tool has difficulty processing units such as acceleration
(feet/sec**2 o r feet/sec/sec) in expressions.

A maximum of 30 logical assertions violations can be accumulated during
dynamic execution.

REACHING SET control file requires the input to be in a specific type
format. It must be of the FORTRAN format 215. The REACHING SET tool
reads the starting statement line number and the ending statement line
number before the tool starts reaching analysis.

Multimodules are handled differently by the CALLING TREE tool. The mod-
ules MUST be CONCATENATED sequentially then given to the CALLING TREE for
processing. The Calling Tree interface handler takes care of
concatenation.

Dynamic tools ASSERT,TRACE, and PROBE require special loading procedures
(refer to "Dynamic Tools" section fo r details).

SUMMARY OF AED V&V TOOL COMMANDS

A summary of commands is presented in the next two sections. In the first
section, a summary of all the PDP-11/60 UNIX commands for all the tools is pre-
sented. An example is given for a typical situation of one AED module being pro-
cessed.

In the second section, a summary of all Univac commands necessary to execute
I each tool is presented. Again, the typical situation is of one AED module being
i processed.

PDP-11/60 UNIX* Tool Interface Commands

The off-site Univac (table 1) shows the commands that would be used to process
a typical AED static module called "sample_stat.aedtt, a typical AED Asserted module
called "samp - assert.aed", a typical AED Trace module called "samp-trace.aed", and a
typical AED Probe module called "samp_probe.aed."
reaching set and symbolic execution called "reach.dat" and "symbolic.dat," respec-
tively, were used. Sample link edit decks appear for the Assert, Trace, and Probe
tools whose names are "trass.maptt ,for assertion and trace link edit decks and
"probe.map" for the probe link-edit deck.

Also sample control files for

TABLE 1.- PDP-11/60 UNIX TOOL INTERFACE COMMANDS

AED V & V Tool PDP-11/60 UNIX* Command

Module Dependencies
Global Cross Reference
Interface
Enhanced Listing & Profile

SET/USE
Calling Tree
Units
Invocations
Cross Reference
Reaching Set
Assertion
Trace
Probe
Symbolic Execution
Extract Program
Report Generator
Pallet Interface Program

$static -d sample-stat.aed
$static -g sample-stat.aed
$static -i sample-stat.aed
$static -1 sample-stat.aed

%static sample-stat.aed
$static -s sample-stat.aed
%static -t sample-stat.aed
%static -u sample-stat.aed
$static -v sample-stat.aed
$static -x sample-stat.aed
$static -r reach.dat sample - stat.aed
%assert -1 trass.map samp-assert.aed
$trace -1 trass.map samp-trace.aed
%probe -1 probe.map sap-probe.aed
%symbolic symbolic.dat samp-symbol.aed
$extr 1ink.obj
$rpt data.dyn 1ist.obj

or

%Pif

Univac 1100 Commands

The following pages prefaced by YJNIVAC 1100 V & V Tool name" represent the
equivalent Univac runstreams necessary to execute the pertinent AED V&V tool.

61

I UNIVAC 1100 AED Dependencies Matrix

@RUN Univac run card
@ASG,AX INSERTS.
@FREE AVFS$$.
@ASG,T AVFS$$.
@ELT , I AVFS$$. SAMPLE-STAT

THIS IS THE BEGINNING OF A DUMMY AED STATIC SOURCE FILE

AED STATEMENTS WOULD USUALLY BE HERE

THIS IS THE END OF THE DUMMY AED STATIC SOURCE FILE
i @HDG,X *** UPDATED AED DEPENDENCE MATRIX ***

@FREE TKFIL.
@ASG,T TKFIL.
@USE 21.,TKFIL.
@FREE LKFIL.
@ASG,T LKFIL.
@USE 22.,LKFIL.
@XQT AMES*DEP.DEPEND
@ADD AVFS$$.SAMPLE-STAT
@FIN

62

UNIVAC 1100 AED Global Cross Reference

@RUN Univac run card
@ASG,AX INSERTS.
@FREE AVFS$$.
@ASG, T AVFS$$.
@ELT,I AVFS$$.SAMPLE STAT

THIS IS THE BEGINNING OF A DUMMY AED STATIC SOURCE FILE
AED STATEMENTS WOULD USUALLY BE HERE

THIS IS THE END OF THE DUMMY AED STATIC SOURCE FILE
@HDG,X *** UPDATED AED GLOBAL CROSS REFERENCE ***
@FREE ELSE$$.
@ASG,T ELSE$$.
@USE 24.,ELSE$$.
@FREE TKFIL.
@ASG,T TKFIL.
@USE 22.,TKFIL.
@FREE LKFIL.
@ASG,T LKFIL.
@USE 21.,LKFIL.
@FREE FTN028.
@ASG,T FTN028.
@USE 28.,FTN028.
@ASG,T TKTAB.
@XQT AMES*GBLXREF.INITIAL
@XQT AMES*GBLXREF.GLOBAL
@ADD, E AVFS$$.SAMPLE STAT

@FIN
@XQT AMES*GBLXREF .FINAL

63

UNIVAC 1100 AED Interface

@RUN Univac run card
@ASG,AX INSERTS.
@FREE AVFS$$.

@ELT,I AVFS$$.SAMPLE-STAT
@ASG , T AVFS$$.

THIS IS THE BEGINNING OF A DUMMY AED STATIC SOURCE FILE

AED STATEMENTS WOULD USUALLY BE HERE

THIS IS THE END OF THE DUMMY AED STATIC SOURCE FILE
@HDG,X *** UPDATED AED INTERFACE REPORT ***
@FREE TKFIL.
@ASG,T TKFIL.
@USE 21.,TKFIL.
@FREE LKFIL.
@ASG,T LKFIL.
@USE 22.,LKFIL.
@ASG,AX user-login-id*LIBOLD.
@USE Il.,user-login-id*LIBOLD.
@DELETE,C LIBNEW.
@CAT,P LIBNEW.
@ASG,AX LIBNEW.
@USE 8.,LIBNEW.
@XQT AMES*INTER.INTER
@ADD,E AVFS$$.SAMPLE STAT
@COPY LIBNEW. ,user - login - id*LIBOLD.
@FIN

64

~ ~ ~ _ _ _ _ _ _ ~ ~~~~~ ~~~

UNIVAC 1100 AED List and Profile

@RUN Univac run card
@ASG,AX INSERTS.
@FREE AVFS$$.
@ASG,T AVFS$$.
@ELT, r AVFS$$. SAMPLE STAT

THIS IS THE BEGINNING OF A DUMMY AED STATIC SOURCE FILE
AED STATEMENTS WOULD USUALLY BE HERE

THIS IS THE END OF THE DUMMY AED STATIC SOURCE FILE
@HDG,X *** AED ENHANCED LISTING, MODULE HDGSEL ***
@XQT GRC*LIST.LIST
@ADD,E AVFS$$.SAMPLE STAT

@XQT AMES*PROFILE.PROFILE
@ADD , E AVFS$$.SAMPLE - STAT
@FIN

@HDG,X *** UPDATED AED STATEMENT PROFILE ***

65

UNIVAC 1100 AED Set/Use

@RUN Univac run card
@ASG,AX INSERTS.
@FREE AVFS$$.
@ASC,T AVFS$$.
@ELT,I AVFS$$.SAMPLE-STAT

THIS IS THE BEGINNING OF A DUMMY AED STATIC SOURCE FILE

AED STATEMENTS WOULD USUALLY BE HERE

THIS IS THE END OF THE DUMMY AED STATIC SOURCE FILE
@HDG,X *** UPDATED AED SETUSE REPORT ***
@FREE TKFIL.
@ASG,T TKFIL.
@USE 21.,TKFIL.
@FREE LKFIL.
@ASG,T LKFIL.
@USE 22.,LKFIL.
@ASG,T TKTAB.
@XQT AMES*SETUSE.SETUSE
@ADD,E AVFS$$.SAMPLE STAT
@FIN I -

66

~ ~~ ~ ~ ~~~

UNIVAC 1100 AED Calling Tree

@RUN Univac run card
@ASG,AX INSERTS.
@FREE AVFS$$.
@ASG,T AVFS$$.
@ELT, I AVFS$$.SAMPLE STAT

THIS IS THE BEGINNING OF A DUMMY AED STATIC SOURCE FILE
AED STATEMENTS WOULD USUALLY BE HERE

THIS IS THE END OF THE DUMMY AED STATIC SOURCE FILE
@HDG,X *** UPDATED AED CALLING TREE ***
@FREE TKFIL.
@ASG,T TKFIL.
@USE 21.,TKFIL.
@FREE LKFIL.
@ASG,T LKFIL.
@USE 22.,LKFIL.
@XQT AMES*CTREE.CTREE
@ADD AVFS$$.SAMPLE-STAT
@FIN

67

UNIVAC 1100 AED Units

@RUN Univac run card
@ASG,AX INSERTS.
@FREE AVFS$$.
@ASG,T AVFS$$.
@ELT,I AVFS$$.SAMPLE-STAT

THIS IS THE BEGINNING OF A DUMMY AED STATIC SOURCE FILE

AED STATEMENTS WOULD USUALLY BE HERE

THIS IS THE END OF THE DUMMY AED STATIC SOURCE FILE
@HDG,X *** UPDATED AED UNITS ANALYSIS ***
@XQT AMES*UNITS.UNITS
@ADD,E AVFS$$.SAMPLE - STAT
@FIN

68

UNIVAC 1100 AED Invocation

@RUN Univac run card
@ASG,AX INSERTS.
@FREE AVFS$$.
@ A X , T AVFS$$.
@ELT,I AVFS$$.SAMPLE STAT

THIS IS THE BEGINNING OF A DUMMY AED STATIC SOURCE FILE
AED STATEMENTS WOULD USUALLY BE HERE

THIS IS THE END OF THE DUMMY AED STATIC SOURCE FILE
@HDG,X *** UPDATED AED INVOCATIONS REPORT ***
@FREE TKFIL.
@ASG,T TKFIL.
@USE 21.,TKFIL.
@FREE LKFIL.
@ASG,T LKFIL.
@USE 22.,LKFIL.
@XQT AMES*INVOKE.INVOKE
@ADD AVFS$$.SAMPLE - STAT
@FIN

69

UNIVAC 1100 AED Cross Reference

@RUN Univac run card
@ASG,AX INSERTS.
@FREE AVFS$$.
@ASG,T AVFS$$.
@ELT,I AVFS$$.SAMPLE STAT

THIS IS THE BEGINNING OF A DUMMY AED STATIC SOURCE FILE
AED STATEMENTS WOULD USUALLY BE HERE

THIS IS THE END OF THE DUMMY AED STATIC SOURCE FILE
@FREE ELSE$$.
@ASG,T ELSE$$.
@USE 24.,ELSE$$.
@FREE TKFIL.
@ASG,T TKFIL.
@USE 22.,TKFIL.
@FREE LKFIL.
@ASG,T LKFIL.
@USE 21.,LKFIL.
@ASG,T TKTAB.
@HDG,X *** UPDATED AED SINGLE MODULE CROSS REFERENCE ***
@XQT AMES*XREF.XREF
@ADD, E AVFS$$. SAMPLE-STAT
@FIN

70

~

UNIVAC 1100 AED Reaching S e t

@RUN Univac run card
@ASG,AX INSERTS.
@FREE AVFS$$.
@ASG,T AVFS$$.
@CAT,P DDPATH.
@ASG,AX DDPATH.
@USE 25.,DDPATH.
@ELT,I AVFS$$.SAMPLE STAT

THIS IS THE BEGINNING OF A DUMMY AED STATIC SOURCE FILE
AED STATEMENTS WOULD USUALLY BE HERE

THIS IS THE END OF THE DUMMY AED STATIC SOURCE FILE
@HDG,X *** UPDATED AED REACHING SET ***
@XQT AMES*REACH.REACH
@ADD,E AVFS$$.SAMPLE - STAT

5 10
@FLIST DDPATH.
@DELETE,C DDPATH.
@FIN

71

UNIVAC 1100 AED Assertion

@RUN Univac run card
@ASG,AX user-login-id*INSERTS.
@ASG,AX user-login-id.
@ASG,T AVFS$$.
@DELETE,C TABFIL.
@CAT,P TABFIL.
@DELETE,C TOKFIL.
@CAT,P TOKFIL.
@DELETE,C INST.
@CAT,P INST.
@ASG,AX TOKFIL.
@USE 20.,TOKFIL.
@ASC,AX INST.
@USE 30.,INST.
@ASG,AX TABFIL.
@USE 25.,TABFIL.
@ELT,I AVFS$$.SAMP-ASSERT

THIS IS THE BEGINNING OF A DUMMY AED ASSERTED SOURCE FILE

AED STATEMENTS WOULD USUALLY BE HERE

COMMENT ASSERT* HEIGHT>SOO;
COMMENT ASSERT* ALL I ALPHA(1,N) X(1) > Y(1);

THIS IS THE END OF THE DUMMY AED ASSERTED SOURCE FILE
@XQT AMES*ASSERT.ASSERT
@ADD,E AVFS$$.SAMP-ASSERT
@COPY,I INST.,user-login id.INST
@CAPS*CROSS . AEDCAPS, C user-login-id . INST, user login id. INST
@CAPS*CROSS. CASM2 user-login-id . INST, user-login - id .SAMPLE - DYN
@DELETE,SC user - login - id.INST
@DATA,L TABFIL.
@END
@CAPS*CROSS.LINK,LTSI ,user - login - id.LINK

ORIGIN @3BOO@,O;
INCLUDE prog-f ile(FTCASE) ;
INCLUDE prog-file(FTINSERTE) ;

7

9

; INCLUDE ALL OF THE ROUTINES REQUIRED FOR PROBE, TRACE
; AND ASSERTION PROCESSING
7

1

72

INCLUDE prog-file(ALOOPT0P);
INCLUDE prog f ile(G0UT) ;
INCLUDE prog-file(ASSERT) ;
INCLUDE proglf ile(OUTPUT) ;
INCLUDE prog file(1NPUT);
ORIGIN @79D9@,2;
;INCLUDE prog-file(DDPATH); DECISION PATH ROUTINE
WAIT EQU @7000@; WORD TO WAIT FOR DATA
ASSERT.CAT EQU @7001@; INTERRUPT CATEGORY
ASSERT.SEL EQU @7002@; SELECTED NUMBER OF ASSERTIONS
ASSERT.PTR EQU @7003@; POINTER TO THE LOGICAL ASSERTION TABLE
ASSERT.BUFFER EQU @7004@;
INPUT. CAT EQU @7001@; INTERRPUT CATEGORY
INPUT. PTR EQU @7500@; POINTER TO THE TRACE TABLE
1NPUT.BUFFER EQU @7501@; TRACE TABLE

WAITS FOR MODEL DATA TO REFRESH
STANDARD OUTPUT
LOGICAL ASSERTION VIOLATION ROUTINE
TRACE ASSERTION ROUTINE
TRACE ASSERTION ROUTINE

OFFSET FOR DECISION PATH ... TABLE AT 7A00

LOGICAL ASSERTION VIOLATION TABLE

DDPATH.BUFFER EQU @7A00@; DDPATH TABLE
?

@XQT CAPS*CROSS.HPLDTAPE
user-login - id
LINK
@EOF
@DELETE,SC user-login-id.LINK
@PACK user-login - id.
@FIN

73

UNIVAC 1100 AED Trace

@RUN Univac run card
@ASC,AX INSERTS.
@ASG,AX user-login - id.
@ASG,T AVFS$$.
@DELETE,C TABFIL.
@CAT,P TABFIL.
@DELETE,C TOKFIL.
@CAT,P TOKFIL.
@DELETE,C TRACE.
@CAT,P TRACE.
@ASG,AX TOKFIL.
@USE 20.,TOKFIL.
@ASG,AX TRACE.
@USE 30.,TRACE.
@ASC,AX TABFIL.
@USE 25.,TABFIL.
@ELT,I AVFS$$.SAMP-TRACE

THIS IS THE BEGINNING OF A DUMMY AED TRACED SOURCE FILE

AED STATEMENTS WOULD USUALLY BE HERE

COMMENT INPUT*BOOLEAN ALIGN;
COMMENT OUTPUT* LONG TOTAL.TIME;

THIS IS THE END OF THE DUMMY AED TRACED SOURCE FILE
@XQT AMES*TRACE.TRACE
@ADD,E AVFS$$.SAMP TRACE
@COPY, I TRACE. ,user login id. TRACE
@CAPS*CROSS . AEDCAPSTC useylogin-id .TRACE ,user login id .TRACE
@CAPS*CROSS . CASM2 user-login-id .TRACE, user-login-id . :AMP-TRACE
@DELETE,SC user-login - id.TRACE
@DATA,L TABFIL.
@END
@CAPS*CROSS.LINK,LTSI ,user-login-id.LINK

ORIGIN @3BOO@,O;
INCLUDE user-login-id(FTCASE);
INCLUDE user-login-id(FT1NSERTE);

?

; INCLUDE ALL OF THE ROUTINES REQUIRED FOR PROBE, TRACE
; AND ASSERTION PROCESSING

74

INCLUDE user - login - id(ALOOPT0P); WAITS FOR MODEL DATA TO REFRESH
INCLUDE user login id(C0UT);
INCLUDE user-login-id(- ASSERT) ;
INCLUDE user-login - id(0UTPUT) ;
INCLUDE user-login - id(INPUT) ;
ORIGIN @79D9@,2; OFFSET
;INCLUDE user - login id(DDPATH);
WAIT EQU @?OOO@ ; WORD

STANDARD OUTPUT
LOGICAL ASSERTION VIOLATION ROUTINE
TRACE ASSERTION ROUTINE
TRACE ASSERTION ROUTINE

DECISION PATH ROUTINE
FOR DECISION PATH ... TABLE AT 7A00
TO WAIT FOR DATA I

ASSERT.CAT EQU @7001@; INTERRUPT CATEGORY
ASSERT.SEL EQU @7002@; SELECTED NUMBER OF ASSERTIONS
ASSERT.PTR EQU @7003@; POINTER TO THE LOGICAL ASSERTION TABLE
ASSERT.BUFFER EQU @7004@;
1NPUT.CAT EQU @7001@; INTERRPUT CATEGORY
INPUT. PTR EQU @7500@; POINTER TO THE TRACE TABLE
1NPUT.BUFFER EQU @7501@; TRACE TABLE

LOGICAL ASSERTION VIOLATION TABLE

DDPATH.BUFFER EQU @7A00@; DDPATH TABLE

@XQT CAPS*CROSS.HPLDTAPE
user-login-id
LINK
@EOF
@DELETE,SC user login - id.LINK
@PACK user-login - id.
@FIN

75

UNIVAC 1100 AED Probe

@RUN Univac run card
@ASG,AX INSERTS.
@ASG,T AVFS$$.
@DELETE,C TABFIL.
@CAT,P TABFIL.
@ASG,AX TABFIL.
@USE 25.,TABFIL.
@ELT,I AVFS$$.SAMP-PROBE

THIS IS THE BEGINNING OF A DUMMY AED PROBED SOURCE FILE

AED STATEMENTS WOULD USUALLY BE HERE

I BEGIN -------
: I

: I
: I-one loop or path among other paths

I END --_----

THIS IS THE END OF THE DUMMY AED PROBED SOURCE FILE
@ASG,AX user-login - i d .
@DELETE,C TOKFIL.
@CAT,P TOKFIL.
@DELETE,C INSTFL.
@CAT,P INSTFL.
@ASG,AX TOKFIL.
@USE 20.,TOKFIL.
@ASG,AX INSTFL.
@USE 30.,INSTFL.
@XQT AMES*PROBE.PROBE
@ADD,E AVFS$$.SAMP PROBE
@COPY, I INSTFL. ,user-login-id. INSTFL
@HDG,X *** UPDATED INSTRUMENTED AED MODULE ***
@CAPS*CROSS.AEDCAPS,C user-login-id.INSTFL,user-login-id.INSTFL
@CAPSnCROSS.CASM2 user-login-id.INSTFL,user - login - id.SAMP - PROBE
@DELETE,SC user-login-id.INSTFL
@DATA,L TABFIL.
@END
@DELETE,C PROBE.
@CAT,P PROBE.
@ASG,AX PROBE.
@USE 3.,PROBE.
@ASG,AX TABFIL.
@USE 2.,TABFIL.
@XQT AMES*DDPATH.DDPATH
@COPY,I PROBE.,user-login - id.PROBE
@DELETE,C PROBE.

76

@CAPS*CROSS.AEDCAPS,C user login-id.PROBE,user-login id.PROBE
@CAPS*CROSS . CASM2 user-login id. PROBE, user-login-id .EDPATH
@DELETE ,SC user login id. PROBE
@CAPS*CROSS. LINK, LTSI-,user - login-id. LINK

ORIGIN @3BOO@,O;
INCLUDE user login-id(FTCASE) ;
INCLUDE user-login-id(FT1NSERTE) - ;

9

9

; INCLUDE ALL OF THE ROUTINES REQUIRED FOR PROBE, TRACE
; AND ASSERTION PROCESSING
9

7

INCLUDE user-login-id(ALOOPT0P);
INCLUDE user-login-id(C0UT); STANDARD OUTPUT
INCLUDE user-login-id(ASSERT);
INCLUDE user login - id(0UTPUT);
INCLUDE user-login - id(INPUT) ;
ORIGIN @79D9@,2;
INCLUDE user - login id(DDPATH);

WAITS FOR MODEL DATA TO REFRESH

LOGICAL ASSERTION VIOLATION ROUTINE
TRACE ASSERTION ROUTINE
TRACE ASSERTION ROUTINE

OFFSET FOR DECISION PATH ... TABLE AT "A00
DECISION PATH ROUTINE

WAIT EQU @7000@; WORD TO WAIT FOR DATA
ASSERT.CAT EQU @7001@; INTERRUPT CATEGORY
ASSERT.SEL EQU @7002@; SELECTED NUMBER OF ASSERTIONS
ASSERT.PTR EQU @7003@; POINTER TO THE LOGICAL ASSERTION TABLE
ASSERT.BUFFER EQU @7004@;
INPUT. CAT EQU @7001@; INTERRPUT CATEGORY
INPUT. PTR EQU @7500@; POINTER TO THE TRACE TABLE
1NPUT.BUFFER EQU @7501@; TRACE TABLE

LOGICAL ASSERTION VIOLATION TABLE

DDPATH.BUFFER EQU @7A00@; DDPATH TABLE
?

@XQT CAPS*CROSS.HPLDTAPE
user-login - id
LINK
@EOF
@DELETE,SC user-login-id.INSTFL,user-login - id.DDPATH,user - l og in - id.LINK
@PACK user - login - id.
@FIN

77

@RUN Univac run card
@ASG,AX INSERTS.
@ASG , T AVFS$$.
@ELT,I AVFS$$.SAMP-SYMBOL

THIS IS THE BEGINNING

AED STATEMENTS

UNIVAC 1100 AED Symbolic Execution

OF A DUMMY AED SYMBOLIC SOURCE FILE

WOULD USUALLY BE HERE

THIS IS THE END OF THE DUMMY AED SYMBOLIC SOURCE FILE
@XQT AMES*SYMEXEC.SYMEXEC

FOR LINES = 10 .. 20 DO
LAT.LIM.CMD
END FOR

@ADD,E AVFS$$.SAMP-SYMBOL
@FIN

78

APPENDIX A

V&V TOOL DEVELOPMENT COMPUTER

The software verification and validation tools for the DFCSVL were developed on
The software tools were coded in IFTRAN," a preprocessor f o r FORTRAN, a VAX 11/780.

featuring structured language capability. Once the IFTRAN source code is processed
and the FORTRAN source code created, the FORTRAN source code is passed to the
FORTRAN compiler for compiling. Unfortunately, comments that occurred in the struc-
tured code are not included in the FORTRAN source code so very little in-code docu-
mentation is available at the FORTRAN source level. The FORTRAN source code of the
V&V tools was provided under contract, therefore, any modification o r maintenance of
the V&V tool software must be performed by the developer of the tools (ref. 1) .

Preliminary testing of the tools occurred on the VAX. However, since there are
differences between the VAX and the Univac 1100, especially in memory allocation and
disk usage, care must be used in rehosting the tools onto the Univac 1100.

"IFTRAN is a product of General Research Corporation.

79

APPENDIX B

REHOSTING THE TOOLS

The comments that occur in this appendix assumes the source code the user is
rehosting on the Univac originated on the VAX. A list is presented below of special
areas to be aware of and areas where experts may be needed for consultation.

Area Comments

Source code transfer Create a VAX source tape compatible with the
Univac 1100 computer. Recommended tape
characteristics:

tape density (1600 bpi or higher)
9 track tape
unlabelled tape
source code ASCII format
one module per f i l e or one too l per
file. Modules should be separated from
each other if there is one tool per
file. This is to ease in editing the file
and separating modules.

Logical unit
assignments

Disk usage

Make sure unit assignments are compatible with
the Univac environment.

Logical units for reports may need
changing, such as PRTSYM routine.

Several routines in the tools require careful
usage.

OPNINS enable FORTRAN function call
FAC2SF. If no OPNINS routine, then the
call will reside in the LRLEX routine.

execution of the tool may be EXCESSIVE.
NITTOK OPEN statement must be properly set, else

Memory Allocation Some tools may require special handling of memory
to successfully execute. The tools may be very
large when instruction and data areas are combined
resulting in aborting the load of the t o o l .
Solution :

Optimization of code.
If optimization does not solve load
aborts;then overlays may be required.

Dynamic AED V&V
tool routines

ASSERT, PROBE and TRACE tools require and build
dynamic AED V & V tool routines. These routines
need to be compiled and assembled by the AED
processors so that the object codes will be
available for the link loader. The list below
provides information regarding these routines.

Subroutine Comments

DDPATH

1NPUT.TRACE

0UTPUT.TRACE

ASSERT.FALSE

GOUT

Generated by the PROBE tool.

AED V&V TRACE tool routine. See
figure B1.

AED V&V TRACE tool routine. See
figure B2.

AED V&V ASSERTION tool routine. See
figure B3.

AED Standard output routine. DDPATH
references GOUT. See figure B4.

81

BEGIN
DEFINE PROCEDURE INPUT.TRACE(MODULE.INDEX, VAR.INDEX, VAR.TYPE,

SHORT.VALUE, LONG.VALUE)
WHERE INTEGER MODULE.INDEX, VAR.INDEX, VAR.TYPE, SHORT.VALUE;

LONG LONG.VALUE TOBE
BEG IN

LONG TOTAL.TIME ;
LONG ARRAY INPUT. BUFFER(400) ;
INTEGER 1NPUT.PTR ;
INTEGER PTR.PRIME ;
EXTERNAL TOTAL-TIME ;
EXTERNAL 1NPUT.PTR ;
EXTERNAL 1NPUT.BUFFER;
EXTERNAL PTR.PRIME ;

... LOAD AT @7500@ / /

... LOAD AT @7501@ / /

LONG DUMMY ;
INTEGER ARRAY SHORT(1) ;
SHORT $=$ DUMMY ;

I

I COMMENT **** IF MORE THAN 40 ENTRIES, THEN BIAS COUNTER VALUE BY 100 **;
PTR.PRIME=IF 1NPUT.PTR GRT 40 THEN 1NPUT.PTR-100 ELSE 1NPUT.PTR;

INPUT.BUFFER(PTR.PRIME * 5 + 0) = MODULE.INDEX ;
INPUT.BUFFER(PTR.PRIME * 5 + 1) VAR.INDEX 9

INPUT.BUFFER(PTR.PRIME * 5 + 2) = 0 9

INPUT.BUFFER(PTR.PRIME * 5 + 3) = TOTAL.TIME ;

IF VAR.TYPE = = 1 THEN
BEGIN
SHORT(0) = SHORT.VALUE;
SHORT(1) = 0
END
ELSE
DUMMY = LONG.VALUE;

INPUT.BUFFER(PTR,PRIME * 5 + 4) = DUMMY ;

1NPUT.PTR = IF PTR.PRIME EQL 39 THEN 100
ELSE 1NPUT.PTR + 1 ;

END
END FIN1

Figure B1.- Subroutine 1NPUT.TRACE.

82

BEGIN
DEFINE PROCEDURE OUTPUT.TRACE(MODULE.INDEX, VAR.INDEX, VAR.TYPE,

WHERE INTEGER MODULE.INDEX, VAR.INDEX, VAR.TYPE, SHORT.VALUE;
SHORT.VALUE, LONG.VALUE)

LONG LONG.VALUE TOBE
BEGIN

LONG TOTAL.TIME ;
LONG ARRAY INPUT.BUFFER(400) ;
INTEGER 1NPUT.PTR ;
INTEGER PTR.PRIME ;
EXTERNAL TOTAL.TIME ;
EXTERNAL 1NPUT.PTR ; ... LOAD AT @7500@ / /
EXTERNAL 1NPUT.BUFFER; ... LOAD AT @7501@ / /
EXTERNAL PTR.PRIME ;

LONG DUMMY ;
INTEGER ARRAY SHORT(1) ;
SHORT $=$ DUMMY ;

COMMENT **** IF MORE THAN 40 ENTRIES, THEN BIAS COUNTER VALUE BY 100 **;
PTR.PRIME=IF 1NPUT.PTR CRT 40 THEN 1NPUT.PTR-100 ELSE 1NPUT.PTR;

INPUT.BUFFER(PTR.PRIME * 5 + 0) = MODULE.INDEX ;
INPUT.BUFFER(PTR.PRIME * 5 + 1) = VAR.INDEX 9

INPUT.BUFFER(PTR.PRIME * 5 + 2) = 1 9

INPUT.BUFFER(PTR.PRIME * 5 + 3) = TOTAL.TIME ;

IF VAR.TYPE == 1 THEN
BEGIN
SHORT(0) = SHORT.VALUE;
SHORT(1) = 0
END
ELSE
DUMMY = LONG.VALUE;

INPUT.BUFFER(PTR.PRIME * 5 + 4) = DUMMY ;

1NPUT.PTR = IF PTR.PRIME EQL 39 THEN 100
ELSE 1NPUT.PTR + 1 ;

END
END FIN1

Figure B2.- Subroutine 0UTPUT.TRACE.

83

BEGIN
DEFINE PROCEDURE ASSERT.FALSE (MODULE.INDEX, LINE.INDEX)
WHERE INTEGER MODULE.INDEX, LINE.INDEX TOBE

BEGIN
BOOLEAN ASSERT.FLAC ;
LONG TOTAL.TIME ;
INTEGER DO.WO ;
INTEGER DO.BUFF.0 ;
INTEGER ASSERT.SEL ;
INTEGER ASSERT.PTR ;
INTEGER ASSERT.CAT ;
INTEGER ARRAY ASSERT.BUFFER(160) ;
EXTERNAL TOTAL .TIME ;
EXTERNAL DO.BUFF.0 ; ... LOAD AT @370B@ / /
EXTERNAL DO.WO ; ... LOAD AT @F2E1@ / /
EXTERNAL ASSERT.CAT ; ... LOAD AT @7001@ / /
EXTERNAL ASSERT.SEL ; ... LOAD AT @7002@ / /
EXTERNAL ASSERT.PTR ; ... LOAD AT @7003@ / /
EXTERNAL ASSERT.BUFFER; ... LOAD AT @7004@ / /
ASSERT.CAT = 1 ; ... IMPLIES ASSERT VIOLATED / /
ASSERT.BUFFER(ASSERT.PTR * 3 + 0) = MODULE.INDEX ;
ASSERT.BUFFER(ASSERT.PTR * 3 + 1) = LINE.INDEX ;
ASSERT.BUFFER(ASSERT.PTR * 3 + 2) = TOTAL.TIME ;
ASSERT.PTR = ASSERT.PTR + 1;
IF ASSERT.SEL < = 0 THEN ASSERT.SEL = 30 ;
IF ASSERT.PTR >= ASSERT.SEL THEN

BEGIN
ASSERT.FLAG = TRUE ;
ASNBIT (ASSERT.FLAG,ll,DO.BUFF.O); ... FOR A CHANNEL //
DO.WO = DO.BUFF.0 ;

ASSERT.CAT = 0 ;
ASSERT.FLAG = FALSE ;
ASNBIT (ASSERT.FLAG,ll,DO.BUFF.O); ... FOR A CHANNEL / /
DO.WO = DO.BUFF.0 ;
ASSERT.PTR = 0 ;

WHILE (ASSERT.CAT NEQ -1) DO ; ... BUSY LOOP / /

END
END

END FIN1

Figure B3.- Subroutine ASSERT.FALSE.

.

BEGIN
DEFINE PROCEDURE GOUT(STRING,VALUE)

WHERE INTEGER STRING, VALUE TOBE
BEG IN

INTEGER ERRORS ;EXTERNAL ERRORS ;
PRESET ERRORS = 0;
ERRORS = ERRORS + 1

END FIN1
END ;

Figure B4.- Subroutine GOUT.

85

APPENDIX C

PDP-11/60 INTERFACE HANDLERS

The PDP-11/60 Interface Handlers are a series of UNIX shell programs which make
the utilization of the V&V tools "user friendly". These Interface Handlers help the
user to prepare the Univac run-stream for a particular tool in the proper sequence,
contents, and options of the Univac control commands. Consequently, the user needs
to become familiar with the UNIX commands and the V&V tool capabilities.

The following information in this appendix is intended for the person who is
establishing the V&V tool capability on their environment computer.
the Interface Handlers are written in C programming language and under the source
code control system as a means of maintaining source code configuration control.
Since most of the source code for these handlers is relatively long, source listings
are not included in this document. Source code listings can be requested from the
author. A flow diagram of a handler is presented in figure C1.

The source for

86

VARIABLES INITIALIZED
TO DEFAULT VALUES

I
GET USER I D CODE,
ACCOUNT NUMBER, AND
HOST NAME

I

PROCESS COMMAND LINE
FLAGS, SET VARIABLES
BASED ON FLAGS

PROCESS PRIORITY,
MAX TIME AND MAX
PAGES

PROCESS FILE NAMES LJ
GENERATE UNIVAC I JCL FILE

SEND UNIVAC JCL FILE DISPLAY UNIVAC JCL
"Z" OPTION

I J I I

Figure C1.- Flow diagram for i n t e r f a c e h a n d l e r s .

87

REFERENCES

1 . Saib, S. H.: Automated Verification of Flight Software - User's Manual. NASA
CR-166346, 1982

2 . de Feo, P . ; Doane, D.; and Saito,J.: An Integrated User-Oriented Laboratory for
Verification of Digital Flight Control Systems--Features and Capabilities.
NASA TM 84276, 1982.

3. McLees, R . E . : Analysis of Verification Tools for Digital Flight Control Sys-
tems (DFCS) Software. NASA CR- 17739 1 , Feb. 1986.

88

1. Report No.
NASA TM 88313

3. Recipient's Catalog No. 2. Governnwnt h i o n No.

5. Report Date
January 1987

,
9. Performing Organization Name and Address

Ames Research Center
Moffett Field, CA 94035

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

6. Performing Organization Code

10. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum
14. Sponsoring Agency Code

505-66-2 1

8. Performing Orgmnization Report No.

A-86 28 2

Unclassified Unclassified 93 A05

~ ~~~

16 Abstract

The user's guide of verification and validation (V&V) tools for the
Automated-Engineering-Design (AED) language is specifically written to
update the information found in several documents pertaining to the auto-
mated verification of flight software tools. The intent of this document
is to provide, in one document, all the information necessary to adequately
prepare a run to use thc AED V&V tools.
FORTRAN V&V tools since they were not updated and are not currently active.
Additionally, this document contains the current descriptions of the AED
V&V tools and provides information to augment the NASA TM 84276 entitled
"An Integrated User-Oriented Laboratory for Verification of Digital-Flight-
Control Systems--Features and Capabilities."

The AED V&V tools are accessed from the digital-flight-control-systems
verification laboratory (DFCSVL) via a PDP-11/60 digital computer. The
AED V&V tool-interface handlers on the PDP-11/60 generate a Univac run
stream which is transmitted to the Univac via a Remote Job Entry (RJE) link.
Job execution takes place on the Univac 1100 and the j ob output is trans-
mitted back to the DFCSVL and stored as a PDP-11/60 printfile.

No attempt is made to discuss the

7. Key Words (Suggcrted by Author(s)J

Verification of digital flight
control system

Flight computer
AED computer language

9. Security aaoif. (of this report) I 20. Security classif. (8

18. Distribution Statement

Unclassified - Unlimited

Star Category: 08

1 21. NO. of Pages ' this page) I 22. Rice'

'For sale by the National Technical Information Service. Springfield, Virginia 22161

